The transcription factors Abrupt (Ab) and Knot (Kn) act as selectors of distinct dendritic arbor morphologies in two classes of Drosophila sensory neurons, termed class I and class IV, respectively. We performed binding-site mapping and transcriptional profiling of these isolated neurons. Their profiles were similarly enriched in cell-type-specific enhancers of genes implicated in neural development. We identified a total of 429 target genes, of which 56 were common to Ab and Kn; these targets included genes necessary to shape dendritic arbors in either or both of the two sensory subtypes. Furthermore, a common target gene, encoding the cell adhesion molecule Ten-m, was expressed more strongly in class I than class IV, and this differential was critical to the class-selective directional control of dendritic branch sprouting or extension. Our analyses illustrate how differentiating neurons employ distinct and shared repertoires of gene expression to produce class-selective morphological traits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2013.10.024DOI Listing

Publication Analysis

Top Keywords

class class
8
sensory-neuron subtype-specific
4
subtype-specific transcriptional
4
transcriptional programs
4
programs controlling
4
controlling dendrite
4
dendrite morphogenesis
4
morphogenesis genome-wide
4
genome-wide analysis
4
analysis abrupt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!