Attention deficit/hyperactivity disorder (ADHD) is a common and highly heritable psychiatric disorder. In addition, early life environmental factors contribute to the occurrence of ADHD. Recently, DNA methylation has emerged as a mechanism potentially mediating genetic and environmental effects. Here, we investigated whether newborn DNA methylation patterns of selected candidate genes involved in psychiatric disorders or fetal growth are associated with ADHD symptoms in childhood. Participants were 426 children from a large population based cohort of Dutch national origin. Behavioral data were obtained at age 6 years with the Child Behavior Checklist. For the current study, 11 regions at 7 different genes were selected. DNA methylation levels of cord blood DNA were measured for the 11 regions combined and for each region separately. We examined the association between DNA methylation levels at different regions and ADHD symptoms with linear mixed models. DNA methylation levels were negatively associated with ADHD symptom score in the overall analysis of all 11 regions. This association was largely explained by associations of DRD4 and 5-HTT regions. Other candidate genes showed no association between DNA methylation levels and ADHD symptom score. Associations between DNA methylation levels and ADHD symptom score were attenuated by co-occurring Oppositional defiant disorder and total symptoms. Lower DNA methylation levels of the 7 genes assessed at birth, were associated with more ADHD symptoms of the child at 6 years of age. Further studies are needed to confirm our results and to investigate the possible underlying mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpsychires.2013.10.017 | DOI Listing |
Acta Pharm Sin B
December 2024
Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
encodes a DNA methyltransferase involved in development, cell differentiation, and gene transcription, which is mutated and aberrant-expressed in cancers. Here, we revealed that loss of promotes malignant phenotypes in lung cancer. Based on the epigenetic inhibitor library synthetic lethal screening, we found that small-molecule HDAC6 inhibitors selectively killed -defective NSCLC cells.
View Article and Find Full Text PDFRSC Adv
January 2025
Medicinal Chemistry Department, Faculty of Pharmacy, Minia University 61519 Minia Egypt.
Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy.
View Article and Find Full Text PDFCurr Mol Med
January 2025
Division of Biological and Health Sciences, University of Pittsburgh, 300 Campus Drive, Bradford PA 16701.
Invasive ductal carcinoma (IDC) is the most common type of breast cancer, primarily affecting women in the United States and across the world. This review summarizes key concepts related to IDC causes, treatment approaches, and the identification of biological markers for specific prognoses. Furthermore, we reviewed many studies, including those involving patients with IDC and ductal carcinoma in situ (DCIS) that progressed to IDC.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain.
Background: The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements.
View Article and Find Full Text PDFNat Aging
January 2025
Program in Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA.
DNA methylation marks have recently been used to build models known as epigenetic clocks, which predict calendar age. As methylation of cytosine promotes C-to-T mutations, we hypothesized that the methylation changes observed with age should reflect the accrual of somatic mutations, and the two should yield analogous aging estimates. In an analysis of multimodal data from 9,331 human individuals, we found that CpG mutations indeed coincide with changes in methylation, not only at the mutated site but with pervasive remodeling of the methylome out to ±10 kilobases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!