Specification of functional cranial placode derivatives from human pluripotent stem cells.

Cell Rep

Center for Stem Cell Biology, Sloan-Kettering Institute, 1275 York Ave, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute, 1275 York Ave, New York, NY 10065, USA; Department of Neurosurgery, Sloan-Kettering Institute, 1275 York Ave, New York, NY 10065, USA. Electronic address:

Published: December 2013

Cranial placodes are embryonic structures essential for sensory and endocrine organ development. Human placode development has remained largely inaccessible despite the serious medical conditions caused by the dysfunction of placode-derived tissues. Here, we demonstrate the efficient derivation of cranial placodes from human pluripotent stem cells. Timed removal of the BMP inhibitor Noggin, a component of the dual-SMAD inhibition strategy of neural induction, triggers placode induction at the expense of CNS fates. Concomitant inhibition of fibroblast growth factor signaling disrupts placode derivation and induces surface ectoderm. Further fate specification at the preplacode stage enables the selective generation of placode-derived trigeminal ganglia capable of in vivo engraftment, mature lens fibers, and anterior pituitary hormone-producing cells that upon transplantation produce human growth hormone and adrenocorticotropic hormone in vivo. Our results establish a powerful experimental platform to study human cranial placode development and set the stage for the development of human cell-based therapies in sensory and endocrine disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887225PMC
http://dx.doi.org/10.1016/j.celrep.2013.10.048DOI Listing

Publication Analysis

Top Keywords

cranial placode
8
human pluripotent
8
pluripotent stem
8
stem cells
8
cranial placodes
8
sensory endocrine
8
development human
8
placode development
8
human
6
placode
5

Similar Publications

The transcriptional landscape of the developing chick trigeminal ganglion.

Dev Biol

December 2024

Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA. Electronic address:

The trigeminal ganglion is a critical structure in the peripheral nervous system, responsible for transmitting sensations of touch, pain, and temperature from craniofacial regions to the brain. Trigeminal ganglion development depends upon intrinsic cellular programming as well as extrinsic signals exchanged by diverse cell populations. With its complex anatomy and dual cellular origin from cranial placodes and neural crest cells, the trigeminal ganglion offers a rich context for examining diverse biological processes, including cell migration, fate determination, adhesion, and axon guidance.

View Article and Find Full Text PDF

Gain of 1q is a highly recurrent chromosomal abnormality in human pluripotent stem cells. In this work, we show that gains of 1q impact the differentiation capacity to derivates of the three germ layers, leading to mis-specification to cranial placode and non-neural ectoderm during neuroectoderm differentiation. Also, we found a weaker expression of lineage-specific markers in hepatoblasts and cardiac progenitors.

View Article and Find Full Text PDF

Elp1 function in placode-derived neurons is critical for proper trigeminal ganglion development.

Dev Dyn

October 2024

Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA.

Article Synopsis
  • * Scientists studied chick embryos to understand how this nerve develops and found a special protein called Elp1 that is important for its growth.
  • * When they reduced Elp1, the nerve didn't grow properly, which could help explain a disease called familial dysautonomia.
View Article and Find Full Text PDF

The trigeminal ganglion is a critical structure in the peripheral nervous system, responsible for transmitting sensations of touch, pain, and temperature from craniofacial regions to the brain. Trigeminal ganglion development depends upon intrinsic cellular programming as well as extrinsic signals exchanged by diverse cell populations. With its complex anatomy and dual cellular origin from cranial placodes and neural crest cells, the trigeminal ganglion offers a rich context for examining diverse biological processes, including cell migration, fate determination, adhesion, and axon guidance.

View Article and Find Full Text PDF

Fibroblast growth factors (FGFs) are required for the specification and formation of the epibranchial placodes, which give rise to the distal part of the cranial sensory ganglia. However, it remains unclear whether FGFs play a role in regulating the neurite outgrowth of the epibranchial placode-derived ganglia during further development. Previous studies have shown that Fibroblast growth factor 8 (FGF8) promotes neurite outgrowth from the statoacoustic ganglion in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!