Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging.

Biomaterials

Department of Materials Science & Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, 117574 Singapore. Electronic address:

Published: February 2014

In this report, monodispersed ultra-small Gd2O3 nanoparticles capped with hydrophobic oleic acid (OA) were synthesized with average particle size of 2.9 nm. Two methods were introduced to modify the surface coating to hydrophilic for bio-applications. With a hydrophilic coating, the polyvinyl pyrrolidone (PVP) coated Gd2O3 nanoparticles (Gd2O3-PVP) showed a reduced longitudinal T1 relaxation time compared with OA and cetyltrimethylammonium bromide (CTAB) co-coated Gd2O3 (Gd2O3-OA-CTAB) in the relaxation study. The Gd2O3-PVP was thus chosen for its further application study in MRI with an improved longitudinal relaxivity r1 of 12.1 mM(-1) s(-1) at 7 T, which is around 3 times as that of commercial contrast agent Magnevist(®). In vitro cell viability in HK-2 cell indicated negligible cytotoxicity of Gd2O3-PVP within preclinical dosage. In vivo MR imaging study of Gd2O3-PVP nanoparticles demonstrated considerable signal enhancement in the liver and kidney with a long blood circulation time. Notably, the OA capping agent was replaced by PVP through ligand exchange on the Gd2O3 nanoparticle surface. The hydrophilic PVP grants the Gd2O3 nanoparticles with a polar surface for bio-application, and the obtained Gd2O3-PVP could be used as an in vivo indicator of reticuloendothelial activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2013.11.032DOI Listing

Publication Analysis

Top Keywords

gd2o3 nanoparticles
16
surface coating
8
ultra-small gd2o3
8
study gd2o3-pvp
8
gd2o3
6
nanoparticles
5
gd2o3-pvp
5
manipulating surface
4
coating ultra-small
4
nanoparticles improved
4

Similar Publications

Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine.

Pharmaceutics

December 2024

Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.

Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.

Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.

View Article and Find Full Text PDF

Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in X-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as multimodal contrast enhancement agent for both imaging modalities.

View Article and Find Full Text PDF

Triggered by the vulnerability to atherosclerotic plaques, cardiovascular diseases (CVDs) have become a main reason for high mortality worldwide. Thus, there is an urgent need to develop functional molecular imaging modalities to improve the detection rate of vulnerable plaques. In this study, polyethyleneimine (PEI) was coated on the surface of mesoporous silica nanoprobes (MSN) loaded with GdO (MSN@GdO), followed by coupling the fluorescent dye carboxylated heptamethine cyanine (IR808), and then the dextran sulfate (DS) was modified on the surface of MSN@GdO@IR808 by electrostatic adsorption, to construct a targeted and pH-responsive magnetic resonance (MR)/near-infrared fluorescence imaging (NIRF) dual-modal nanoprobe (MSN@GdO@IR808@DS nanoparticles).

View Article and Find Full Text PDF

Strong metal‒support interaction modulates catalytic activity of Ru nanoparticles on GdO for efficient ammonia decomposition.

iScience

October 2024

Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.

Exploration of efficient Ru-based catalysts is significant for advancing the production of hydrogen from ammonia decomposition, which depends predominantly on the rational regulation of the metal-support interaction of Ru-based catalysts. Herein, highly dispersed Ru nanoparticles (NPs) on GdO (Ru/GdO) are developed and applied for the NH decomposition reaction. By varying the reduction temperature, the activity of the Ru/GdO catalyst can be remarkably improved.

View Article and Find Full Text PDF

Chemotherapy as a cornerstone of cancer treatment is slowly being edged aside owing to its severe side effects and systemic toxicity. In this case, nanomedicine has emerged as an effective tool to address these drawbacks. Herein, a biocompatible carrier based on bovine serum albumin (BSA) coated gadolinium oxide nanoparticles (GdO@BSA) was fabricated for curcumin (CUR) delivery and its physicochemical features along with its potential anticancer activity against nasal squamous cell carcinoma were also investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!