The microbiological safety of fresh produce is of concern for the U.S. food supply. Members of the Lactic Acid Bacteria (LAB) have been reported to antagonize pathogens by competing for nutrients and by secretion of substances with antimicrobial activity, including organic acids, peroxides, and antimicrobial polypeptides. The objectives of this research were to: (i) determine the capacity of a commercial LAB food antimicrobial to inhibit Escherichia coli O157:H7 and Salmonella enterica on spinach leaf surfaces, and (ii) identify antimicrobial substances produced in vitro by the LAB comprising the food antimicrobial. Pathogens were inoculated on freshly harvested spinach, followed by application of the LAB antimicrobial. Treated spinach was aerobically incubated up to 12 days at 7 °C and surviving pathogens enumerated via selective/differential plating. l-Lactic acid and a bacteriocin-like inhibitory substance (BLIS) were detected and quantified from cell-free fermentates obtained from LAB-inoculated liquid microbiological medium. Application of 8.0 log10 CFU/g LAB produced significant (p < 0.05) reductions in E. coli O157:H7 and Salmonella populations on spinach of 1.6 and 1.9 log10 CFU/g, respectively. It was concluded the LAB antimicrobial inhibited foodborne pathogens on spinach during refrigerated storage, likely the result of the production of metabolites with antimicrobial activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2013.09.006DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli o157h7
8
o157h7 salmonella
8
salmonella enterica
8
enterica spinach
8
antimicrobial substances
8
substances produced
8
lactic acid
8
acid bacteria
8
food antimicrobial
8

Similar Publications

Unlabelled: Carbapenem-resistant Enterobacterales (CRE) are divided into two distinct groups: carbapenemase-producing (CPE) and non-carbapenemase-producing (non-CPE). The population of non-CPE growing on CPE selective plates during routine screening is usually not reported and is not well defined. This study aimed to characterize non-CPE isolates growing on those plates.

View Article and Find Full Text PDF

Bacterial infections can induce exuberant immune responses that can damage host tissues. Previously, we demonstrated that systemic infection in mice causes tissue damage in the liver. This liver necrosis is associated with the expression of endogenous retroviruses, chromosomally integrated retroviruses that encode a reverse transcriptase.

View Article and Find Full Text PDF

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

The designated uses of lakes connect individuals to the natural environment, but some can expose recreational users to pathogens associated with fecal contamination that cause waterborne illnesses. Routine monitoring of fecal indicators in surface waters helps identify and track sources of fecal contamination to protect public health. We examined fecal indicators ( and enterococci) and factors influencing recreational freshwater quality.

View Article and Find Full Text PDF

The rapid evolution of nanotechnology has catalyzed significant advancements in the design and application of nano-sensors, particularly within the food industry, where ensuring safety and quality is of paramount concern. This review explores the multifaceted role of nano-sensors constructed from diverse nanomaterials in detecting foodborne pathogens and toxins, offering a comprehensive analysis of their operational principles, sensitivity, and specificity. Nano-sensors leverage unique physical and chemical properties at the nanoscale to enhance the detection of microbial contamination, actively contributing to food safety protocols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!