While Bangladesh made significant achievements in safe water coverage via installation of shallow tubewells (STWs) nationwide, this success was shattered by the discovery of arsenic (As) in the STWs. The extent and severity of As groundwater contamination throughout Bangladesh and its detrimental effects on human health are well known and demand long-term sustainable mitigation. It is an immensely complex and expensive task to bring tens of millions of arsenic exposed people under safe water coverage. While various mitigation measures have been undertaken by various organizations, most have not achieved their expected outcomes due to technical, spatial and socio-economic challenges. Better understanding of these challenges by institutional stakeholders is crucial for sustainable arsenic mitigation in Bangladesh. In this study, institutional stakeholders' opinions on various aspects of As mitigation were elicited to identify their preferences for and reservations of specific mitigation measures. The current status of As mitigation activities and the factors influencing the success of As mitigation were also explored. Institutional weakness, lack of accountability and a latency period were the major factors hindering sustainable As mitigation. The results also suggested that the stakeholders' understanding of the As problem and their preferences for the different mitigation measures have a significant impact on the effectiveness of As mitigation. Mitigation of As contamination is a complex issue that requires a coordinated effort from various levels of stakeholders. The concept of "paying for water", which is currently potentially unknown in the rural areas of Bangladesh, also needs to be developed as this will create a stronger sense of user ownership of As safe water and thus better water management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2013.11.007 | DOI Listing |
Clin Nutr ESPEN
January 2025
Department of Gastroenterology and Hepatology, Intestinal Failure Unit, Radboud University Medical Centre Nijmegen, Geert Grooteplein 10, 6500 HB, Nijmegen, The Netherlands. Electronic address:
Background And Aims: Measurement of the urine sodium concentration (USC) is a simple procedure that in many patients adequately indicates their hydration status. This is of particular importance in patients suffering from short bowel syndrome (SBS), who may very rapidly dehydrate and are at risk for permanently compromising their kidney function. A point of care test (POCT) that allows reliable measurement of USC would enable these patients to effectively evaluate their sodium- and water balance in the at home setting, thereby avoiding hospital visits and delayed test results.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
January 2025
Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:
Background: Upadacitinib is a selective Janus kinase (JAK) 1 inhibitor approved by the Food and Drug Administration for the treatment of moderate-to-severe inflammatory bowel disease (IBD). We aimed to establish and validate a method for determining Upadacitinib in patients with IBD by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method.
Methods: The mobile phase was 0.
J Environ Manage
January 2025
Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China. Electronic address:
Erythromycin is becoming one of the most common contaminants detected in surface water and wastewater, which poses a potential risk to ecological systems and human health. Until now, there is still no effective way to eliminate it. Herein, a novel and efficient erythromycin-degrading fungus Peniophora incarnata F1, capable of utilizing erythromycin as its sole source of carbon and energy, was isolated from contaminated sludge.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands.
Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!