A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoemulsification of pseudo-ceramide by molecular association with mannosylerythritol lipid. | LitMetric

Nanoemulsification of pseudo-ceramide by molecular association with mannosylerythritol lipid.

Colloids Surf B Biointerfaces

Department of Applied Chemistry, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 426-791, Republic of Korea. Electronic address:

Published: April 2014

Ceramide molecules in water-based solutions readily attract each other to form molecular crystals, which seriously hampers to diversify their formulations. This paper describes a facile method that allows fabrication of stable ceramide emulsions through an effective molecular association with a lipid having an asymmetric molecular geometry. The lipid considered in this study is mannosylerythritol lipid (MEL). MEL is specialized in having a unique molecular structure containing sugar alcohol erythritol as a hydrophilic part and two alkyl chains with different number of carbons as hydrophobic moieties. Our particular interest has been focused on experimentally demonstrating how MEL interacts with pseudo-ceramide molecules by observing phase properties, emulsion morphology, and suspension stability. The pseudo-ceramide emulsions prepared with MEL show remarkably improved dispersion stability without either formation of molecular crystals or changes in particle sizes even after storing them for a long time. This suggests that MEL readily associates with the pseudo-ceramide due to the hydrophobic interaction, while it makes a break in the continuity of the molecular assembly of the pseudo-ceramide molecules themselves due to the geometric hindrance coming from MEL's asymmetric molecular structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2013.10.022DOI Listing

Publication Analysis

Top Keywords

molecular
8
molecular association
8
mannosylerythritol lipid
8
molecular crystals
8
asymmetric molecular
8
molecular structure
8
pseudo-ceramide molecules
8
mel
5
nanoemulsification pseudo-ceramide
4
pseudo-ceramide molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!