The objective of the present study was to compare the activities of regimens containing linezolid (LZD) with those not containing LZD against Mycobacterium tuberculosis infection in mice. The three regimens excluding LZD selected in this study are often used in practice against multidrug-resistant tuberculosis (MDR-TB). When LZD was added to these MDR-TB regimens, the combinations were significantly more active after 2 months of therapy with regard to lung CFU reductions. The activity of LZD-containing regimens was greater than the World Health Organization's standard first-line regimen of rifampicin+isoniazid+pyrazinamide. In particular, when LZD was included in the combination levofloxacin+amikacin+para-aminosalicylic acid+pyrazinamide+clofazimine, culture negativity of the lungs was reached after 2 months of treatment in every case. In addition, the serum levels of interleukin-10 and interferon-γ of mice were determined and were found not to be surrogate markers of bacterial clearance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijantimicag.2013.10.010DOI Listing

Publication Analysis

Top Keywords

multidrug-resistant tuberculosis
8
regimens
5
lzd
5
activity linezolid-containing
4
linezolid-containing regimens
4
regimens multidrug-resistant
4
tuberculosis mice
4
mice objective
4
objective study
4
study compare
4

Similar Publications

The global escalation in tuberculosis (TB) cases accompanied by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of ( emphasizes the critical requirement for novel potent drugs. The demonstrates extraordinary adaptability, thriving in diverse conditions, and always finds itself in win-win situations regardless of whether the environment is favorable or unfavorable; no matter the magnitude of the challenge, it can endure and survive. This review aims to uncover the role of multiple stress sensors of that assist bacteria in remaining viable within the host for years against various physiological stresses offered by the host.

View Article and Find Full Text PDF

Oral Regimens for Rifampin-Resistant, Fluoroquinolone-Susceptible Tuberculosis.

N Engl J Med

January 2025

From Médecins Sans Frontières (L.G., F.V.), Sorbonne Université, INSERM Unité 1135, Centre d'Immunologie et des Maladies Infectieuses (L.G.), Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (L.G.), and Epicentre (M.G., E. Baudin), Paris, and Translational Research on HIV and Endemic and Emerging Infectious Diseases, Montpellier Université de Montpellier, Montpellier, Institut de Recherche pour le Développement, Montpellier, INSERM, Montpellier (M.B.) - all in France; Interactive Development and Research, Singapore (U.K.); McGill University, Epidemiology, Biostatistics, and Occupational Health, Montreal (U.K.); UCSF Center for Tuberculosis (G.E.V., P.N., P.P.J.P.) and the Division of HIV, Infectious Diseases, and Global Medicine (G.E.V.), University of California at San Francisco, San Francisco; the National Scientific Center of Phthisiopulmonology (A.A., E. Berikova) and the Center of Phthisiopulmonology of Almaty Health Department (A.K.), Almaty, and the City Center of Phthisiopulmonology, Astana (Z.D.) - all in Kazakhstan; Médecins Sans Frontières (C.B., I.M.), the Medical Research Council Clinical Trials Unit at University College London (I.M.), and St. George's University of London Institute for Infection and Immunity (S.W.) - all in London; MedStar Health Research Institute, Washington, DC (M.C.); Médecins Sans Frontières, Mumbai (V. Chavan), the Indian Council of Medical Research Headquarters-New Delhi, New Delhi (S. Panda), and the Indian Council of Medical Research-National AIDS Research Institute, Pune (S. Patil) - all in India; the Centre for Infectious Disease Epidemiology and Research (V. Cox) and the Department of Medicine (H. McIlleron), University of Cape Town, and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (S.W.) - both in Cape Town, South Africa; the Institute of Tropical Medicine, Antwerp, Belgium (B. C. J.); Médecins Sans Frontières, Geneva (G.F., N.L.); Médecins Sans Frontières, Yerevan, Armenia (O.K.); the National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia (N.K.); Partners In Health (M.K.) and Jhpiego Lesotho (L.O.) - both in Maseru; Socios En Salud Sucursal Peru (L.L., S.M.-T., J.R., E.S.-G., D.E.V.-V.), Hospital Nacional Sergio E. Bernales, Centro de Investigacion en Enfermedades Neumologicas (E.S.-G.), Hospital Nacional Dos de Mayo (E.T.), Universidad Nacional Mayor de San Marcos (E.T.), and Hospital Nacional Hipólito Unanue (D.E.V.-V.) - all in Lima; Global Health and Social Medicine, Harvard Medical School (L.L., K.J.S., M.L.R., C.D.M.), Partners In Health (L.L., K.J.S., M.L.R., C.D.M.), the Division of Global Health Equity, Brigham and Women's Hospital (K.J.S., M.L.R., C.D.M.), the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, (L.T.), and Harvard T.H. Chan School of Public Health (L.T.) - all in Boston; and the Indus Hospital and Health Network, Karachi, Pakistan (H. Mushtaque, N.S.).

Background: For decades, poor treatment options and low-quality evidence plagued care for patients with rifampin-resistant tuberculosis. The advent of new drugs to treat tuberculosis and enhanced funding now permit randomized, controlled trials of shortened-duration, all-oral treatments for rifampin-resistant tuberculosis.

Methods: We conducted a phase 3, multinational, open-label, randomized, controlled noninferiority trial to compare standard therapy for treatment of fluoroquinolone-susceptible, rifampin-resistant tuberculosis with five 9-month oral regimens that included various combinations of bedaquiline (B), delamanid (D), linezolid (L), levofloxacin (Lfx) or moxifloxacin (M), clofazimine (C), and pyrazinamide (Z).

View Article and Find Full Text PDF

Tuberculosis (TB), a leading infectious disease caused by the pathogen , poses a significant treatment challenge due to its unique characteristics and resistance to existing drugs. The conventional treatment regimens, which are lengthy and involve multiple drugs, often result in poor patient adherence and subsequent drug resistance, particularly with multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. This highlights the urgent need for novel anti-TB therapies and new drug targets.

View Article and Find Full Text PDF

Bedaquiline is employed to treat multidrug-resistant and extensive drug-resistant tuberculosis by inhibiting the proton pump of adenosine triphosphate synthase in Mycobacterium tuberculosis. This study aims to investigate the effect of high-fat diets on the pharmacokinetics of bedaquiline through a single-center, open-label, randomized trial in healthy Chinese participants. Bedaquiline fumarate tablets were administered at a dosage of 100 mg under both fasted conditions and high-fat diet conditions.

View Article and Find Full Text PDF

Introduction: Non-adherence to tuberculosis (TB) treatment poses a significant challenge to effective TB management globally and is a major contributor to the emergence of multidrug-resistant TB. Although adherence to TB treatment has been widely studied, a comprehensive evaluation of the comparative levels of adherence in high- versus low-TB burden settings remains lacking. The objective of this systematic review and meta-analysis is to assess the levels of adherence to TB treatment in high-TB burden countries compared to low-burden countries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!