Leptospirosis is been considered an important infectious disease that affects humans and animals worldwide. This review summarizes our current knowledge of bacterial attachment to extracellular matrix (ECM) components and discusses the possible role of these interactions for leptospiral pathogenesis. Leptospiral proteins show different binding specificity for ECM molecules: some are exclusive laminin-binding proteins (Lsa24/LfhA/LenA, Lsa27), while others have broader spectrum binding profiles (LigB, Lsa21, LipL53). These proteins may play a primary role in the colonization of host tissues. Moreover, there are multifunctional proteins that exhibit binding activities toward a number of target proteins including plasminogen/plasmin and regulators of the complement system, and as such, might also act in bacterial dissemination and immune evasion processes. Many ECM-interacting proteins are recognized by human leptospirosis serum samples indicating their expression during infection. This compilation of data should enhance our understanding of the molecular mechanisms of leptospiral pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1574-6968.12349DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
8
leptospiral pathogenesis
8
proteins
6
leptospiral
4
leptospiral extracellular
4
matrix adhesins
4
adhesins mediators
4
mediators pathogen-host
4
pathogen-host interactions
4
interactions leptospirosis
4

Similar Publications

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

Heart development involves the complex structural remodelling of a linear heart tube into an asymmetrically looped and ballooned organ. Previous studies have associated regional expansion of extracellular matrix (ECM) space with tissue morphogenesis during development. We have developed morphoHeart, a 3D tissue segmentation and morphometry software with a user-friendly graphical interface (GUI) that delivers the first integrated 3D visualisation and multiparametric analysis of both heart and ECM morphology in live embryos.

View Article and Find Full Text PDF

Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, 's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence activity with its critical role in bacterial stress responses. Our findings reveal that is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions.

View Article and Find Full Text PDF

Radio-immunotherapy has antitumor activity but also causes toxicity, which limits its clinical application. JS-201 is a dual antibody targeting PD-1 and TGF-β signaling. We investigated the antitumour effect of JS-201 combined with radiotherapy and the effect on radiation-induced lung injury (RILI).

View Article and Find Full Text PDF

Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!