An ever-increasing number of studies use tools from community phylogenetics to infer the processes underlying the assembly of communities. However, very few studies simultaneously use experimental approaches to characterize the ecological niches of species and directly assess the importance of these structuring processes. In this study, we developed an experimental approach for quantifying the use of four types of food resources and three habitat templets in temperate forest ant assemblages. We then used null models to assess whether niches overlapped more or less than expected by chance. Finally, we integrated comparative phylogenetic methods with experimental data on niche use to assess the degree of phylogenetic signal in several key components of the niche. We found that niche filtering, rather than partitioning, was the predominant structuring force. Niche filtering resulted from conservatism in habitat niches in evolutionary time and limitations in the availability of food resources in ecological time. Our study thus supports the idea that similarities in niches among species, rather than the differences, drive the assembly of ant communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1365-2656.12188 | DOI Listing |
PeerJ
January 2025
Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.
Acoustic communities are acoustically active species aggregations within a habitat, where vocal interactions between species can interfere their communication. The acoustic adaptation hypothesis (AAH) explains how the habitat favors the transmission of acoustic signals. To understand how bird acoustic communities are structured, we tested the effect of habitat structure on the phylogenetic structure, and on the phylogenetic and vocal diversity of acoustic communities in a semi-arid zone of Mexico.
View Article and Find Full Text PDFEnviron Res
December 2024
Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China. Electronic address:
Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.
View Article and Find Full Text PDFBiodivers Data J
December 2024
Planing and Design Institute, Yunnan Forestry Technological College, Kunming, China Planing and Design Institute, Yunnan Forestry Technological College Kunming China.
Neural Regen Res
December 2024
Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, NeuroScience Center, Frankfurt am Main, Germany.
The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage. The latter involves global alterations, making understanding plastic responses triggered by local damage difficult. One key feature of the dentate gyrus is that it contains a well-defined neurogenic niche, the subgranular zone, and beyond neurogenesis, newly born granule cells may maintain a "young" phenotype throughout life, adding to the plastic nature of the structure.
View Article and Find Full Text PDFNiche partitioning promotes species coexistence. Yet, it remains unclear how phylogeny and morphology influence the trophic niches of closely related aquatic species with shared feeding modes. Freshwater mussels (Family: Unionidae) are a group of filter-feeding bivalves that are ideal for investigating mechanisms of niche partitioning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!