A compact scanning head for the Atomic Force Microscope (AFM) greatly enhances the portability of AFM and facilitates easy integration with other tools. This paper reports the design and development of a three-dimensional (3D) scanner integrated into an AFM micro-probe. The scanner is realized by means of a novel design for the AFM probe along with a magnetic actuation system. The integrated scanner, the actuation system, and their associated mechanical mounts are fabricated and evaluated. The experimentally calibrated actuation ranges are shown to be over 1 μm along all the three axes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4829715DOI Listing

Publication Analysis

Top Keywords

design development
8
three-dimensional scanner
8
atomic force
8
actuation system
8
note design
4
development integrated
4
integrated three-dimensional
4
scanner
4
scanner atomic
4
force microscopy
4

Similar Publications

Purpose: Adherence to home rehabilitation following total knee arthroplasty (TKA) is essential to reach optimal functional outcomes, especially in fast-track procedures. The aim of this study is to identify which sociodemographic and health factors significantly affect adherence in this context.

Methods: This is a secondary analysis of a randomized controlled trial with 52 patients.

View Article and Find Full Text PDF

Background: The neonatal mortality rate in Pakistan is the third highest in Asia, with 8.6 million preterm babies. These newborns require warmth, nutrition, and infection protection, typically provided by incubators.

View Article and Find Full Text PDF

Exploring the Credibility of Large Language Models for Mental Health Support: Protocol for a Scoping Review.

JMIR Res Protoc

January 2025

Data and Web Science Group, School of Business Informatics and Mathematics, University of Manneim, Mannheim, Germany.

Background: The rapid evolution of large language models (LLMs), such as Bidirectional Encoder Representations from Transformers (BERT; Google) and GPT (OpenAI), has introduced significant advancements in natural language processing. These models are increasingly integrated into various applications, including mental health support. However, the credibility of LLMs in providing reliable and explainable mental health information and support remains underexplored.

View Article and Find Full Text PDF

Background: Psychologists have developed frameworks to understand many constructs, which have subsequently informed the design of digital mental health interventions (DMHIs) aimed at improving mental health outcomes. The science of happiness is one such domain that holds significant applied importance due to its links to well-being and evidence that happiness can be cultivated through interventions. However, as with many constructs, the unique ways in which individuals experience happiness present major challenges for designing personalized DMHIs.

View Article and Find Full Text PDF

Background: Although substantial progress has been made in establishing evidence-based psychosocial clinical interventions and implementation strategies for mental health, translating research into practice-particularly in more accessible, community settings-has been slow.

Objective: This protocol outlines the renewal of the National Institute of Mental Health-funded University of Washington Advanced Laboratories for Accelerating the Reach and Impact of Treatments for Youth and Adults with Mental Illness Center, which draws from human-centered design (HCD) and implementation science to improve clinical interventions and implementation strategies. The Center's second round of funding (2023-2028) focuses on using the Discover, Design and Build, and Test (DDBT) framework to address 3 priority clinical intervention and implementation strategy mechanisms (ie, usability, engagement, and appropriateness), which we identified as challenges to implementation and scalability during the first iteration of the center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!