Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called "Robofurnace." Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading∕unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838427PMC
http://dx.doi.org/10.1063/1.4826275DOI Listing

Publication Analysis

Top Keywords

chemical vapor
8
vapor deposition
8
heating cooling
8
tube furnace
8
cnt forest
8
robofurnace
5
system
5
robofurnace semi-automated
4
semi-automated laboratory
4
laboratory chemical
4

Similar Publications

To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.

View Article and Find Full Text PDF

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

A Highly Selective Probe for Real-Time Monitoring of Ethylenediamine with Ratiometric Luminescent and Colorimetric Dual-Mode Responses.

Anal Chem

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan, University Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.

Ethylenediamine (EDA), as an important chemical raw material and fine chemical intermediate, has been widely applied in various industries. Real-time monitoring of EDA is highly desirable in daily life due to its potential threat to human health. Herein, we report a molecular probe named 4,4'-(9-carbazole-3,6-diyl)bis(1-(naphthalen-2-ylmethyl)pyridin-1-ium) iodide (p-N-DPC·I) with ratiometric luminescent and colorimetric dual-mode responses toward EDA, endowing a highly sensitive and selective detection method for its real-time monitoring.

View Article and Find Full Text PDF

Lower bounds on trees and unicyclic graphs with respect to the misbalance rodeg index.

Heliyon

January 2025

Department of Computer and Information Sciences, Northumbria University, Newcastle, NE1 8ST, UK.

The Misbalance Rodeg () index stands out among the 148 discrete Adriatic indices demonstrating considerable predictive capabilities in evaluations carried out by the International Academy of Mathematical Chemistry. This index excels particularly in forecasting both the enthalpy and the standard enthalpy of vaporization for octane isomers. Despite its significant chemical applicability, the index has not been extensively explored in the literature.

View Article and Find Full Text PDF

A Two-in-One Strategy to Simultaneously Boost the Site Density and Turnover Frequency of Fe-N-C Oxygen Reduction Catalysts.

Angew Chem Int Ed Engl

January 2025

Hunan University, Chemistry and Chemical Engineering, Lushan South Road, Yuelu District, 410082, Changsha, CHINA.

Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe-N4 moieties by the iodine dopants incorporated into the carbon matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!