Co-doped BiFeO3 was synthesized by the sol-gel method and used as a catalyst of persulfate (PMS) for the degradation of tetrabromobisphenol A (TBBPA). The effects of the amount of oxidizing agent, catalyst dosage, and the content of doped Co on the degradation of TBBPA were investigated. Under the optimized conditions (doping level of Co to Fe 0.1, dosage 0.5 g x L(-1), PMS concentration 2.5 mmol x L(-1)), the degradation removal of TBBPA within 60 min achieved more than 95%. Catalyst activity showed only a little loss after 4 recycles, and atomic absorption spectrometry (AAS) result showed that few Co ions were leached (0.27% of total Co). The catalyst can be recycled with magnet which shows a good application prospect in the wastewater treatment.

Download full-text PDF

Source

Publication Analysis

Top Keywords

degradation tetrabromobisphenol
8
[efficient degradation
4
tetrabromobisphenol water
4
water co-doped
4
co-doped fifeo3]
4
fifeo3] co-doped
4
co-doped bifeo3
4
bifeo3 synthesized
4
synthesized sol-gel
4
sol-gel method
4

Similar Publications

Exploration of Quantum Chemistry Methods to Explain Mechanism of Mechanochemical Degradation of Typical Organic Pollutants.

Toxics

December 2024

Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.

The high-efficiency ball milling treatment technology primarily combines the excitation of oxidation processes with high-speed physical collisions, thereby promoting the reaction processes and enhancing the degradation effectiveness of materials. This technology has gained widespread attention in recent years for its application in the degradation of organic solid chemical pollutants. In this study, quantum chemical density functional theory (DFT) was employed to first analyze the impact of electron addition and subtraction on molecular chemical bonds.

View Article and Find Full Text PDF

Local Polarization Piezoelectric Electric Field Promoted Water Dissociation for Hydroxyl Radical Generation under Ambient Humidity Condition.

Adv Mater

January 2025

College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.

Combining piezocatalysts with mechanical ball milling for dissociating water to generate hydroxyl radicals (·OH) offers unprecedented opportunities for energy conversion and environmental remediation. However, the in-depth insights into the relationship between water and local polarization piezoelectric electric field (LPPEF) are currently lacking, in particularly, the ·OH formation mechanism in ball milling driven piezocatalyst system is not systematically elucidated. To this end, the present work constructs a ball milling driven piezoelectric solid/liquid interface between piezoelectric PbBOCl (PBOC) and different contents of water to investigate LPPEF initiated catalytic reaction.

View Article and Find Full Text PDF

Tetrabromobisphenol A (TBBPA) poses significant ecological risks owing to its toxicity; however, its specific effects on toxin-producing cyanobacteria in aquatic environments remain poorly understood. This study systematically investigated the effects of TBBPA at concentrations ranging from 100 ng/L to 100 mg/L on Microcystis aeruginosa (M. aeruginosa) by examining growth, photosynthesis, toxin production, antioxidant responses, and molecular-level changes.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) and tetrabromobisphenol A (TBBP-A) are emerging environmental contaminants with recognized potential health and ecological risks. This study investigated the effects of PFOA and TBBP-A exposure on the global of metabolites of silkworm gut with GC-MS metabolomics. Our results revealed distinct metabolic alterations in silkworms exposed to PFOA and TBBP-A, highlighting their differential impacts on silkworm health and productivity.

View Article and Find Full Text PDF

The role of FAM171A2-GRN-NF-κB pathway in TBBPA induced oxidative stress and inflammatory response in mouse-derived hippocampal neuronal HT22 cells.

Ecotoxicol Environ Saf

January 2025

School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China. Electronic address:

Tetrabromobisphenol A (TBBPA) is one of the brominated flame retardants (BFRs) widely used in industry, which has a broad toxic effect on organisms. However, there is still limited research on the neurotoxic mechanism of TBBPA. Using mouse hippocampal neurons (HT22) cells, the toxicity of TBBPA was evaluated, especially focusing on its alteration on the key molecules in FAM171A2-GRN-NF-κB signaling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!