Comparison of bottom-up proteomic approaches for LC-MS analysis of complex proteomes.

Anal Methods

Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA.

Published: September 2013

Discovery-based proteomic studies aim to answer important biological questions by identifying as many proteins as possible. In order to accomplish this lofty goal, an effort must be placed on determining an optimal workflow that maximizes protein identifications. In this study, we compare protein extraction, digestion and fractionation methods for bottom-up proteomics using a human colon cancer cell line as our model system. Four different buffers for protein extraction, two digestion approaches, as well as three sample fractionation methods were evaluated in order to determine an accessible workflow that gives maximal protein identifications. Samples comparing these workflows were analyzed via UPLC paired with tandem MS on a Q-Exactive mass spectrometer. Our goal is to determine an optimal workflow to enable users to maximize protein identifications. Our results show that an increased number of confident protein identifications are attained with a filter-aided digestion approach as compared to an in-solution digestion. Overall SDS-PAGE fractionation leads to higher numbers of identifications than SCX SpinTip and reverse phased cartridge platforms. The novel aspect of this work is the comparison of two readily available, offline platforms for fractionation in reference to a traditional technique, SDS-PAGE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839868PMC
http://dx.doi.org/10.1039/C3AY40853ADOI Listing

Publication Analysis

Top Keywords

protein identifications
16
optimal workflow
8
protein extraction
8
extraction digestion
8
fractionation methods
8
protein
6
identifications
5
comparison bottom-up
4
bottom-up proteomic
4
proteomic approaches
4

Similar Publications

The tick-borne encephalitis virus is a pathogen endemic to northern Europe and Asia, transmitted through bites from infected ticks. It is a member of the family and possesses a positive-sense, single-stranded RNA genome encoding a polypeptide that is processed into seven non-structural and three structural proteins, including the envelope (E) protein. The glycosylation of the E protein, involving a single N-linked glycan at position N154, plays a critical role in viral infectivity and pathogenesis.

View Article and Find Full Text PDF

Identification and Molecular Characterization of Telosma Mosaic Virus (TelMV) and East Asian Passiflora Virus (EAPV) from Patchouli in China.

Viruses

November 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

Patchouli is a valuable medicinal herb and cash crop in China, but viral infections cause significant yield losses. This study identified six viruses in patchouli transcriptome data, including the first-ever detection of East Asian Passiflora Virus (EAPV) in patchouli. RT-PCR validated three viruses from diseased patchouli plants in Haikou, China: telosma tosaic virus (TelMV), broad bean wilt virus-2 (BBWV-2), and pogostemom alphacytorhabdovirus 1 (PogACRV1_Pog).

View Article and Find Full Text PDF

Duck Tembusu virus (DTMUV), a novel positive-sense RNA virus, has caused significant economic losses in the poultry industry of Eastern and Southeast Asia since its outbreak in 2010. Furthermore, the rapid transmission and potential zoonotic nature of DTMUV pose a threat to public health safety. In this study, a 4D-DIA quantitative proteomics approach was employed to identify differentially expressed cellular proteins in DTMUV-infected DF-1 cells, which are routinely used for virus isolation and identification for DTMUV, as well as the development of vaccines against other poultry viruses.

View Article and Find Full Text PDF

, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored.

View Article and Find Full Text PDF

The gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. , a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the gene family in seashore paspalum remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!