Phytochemical investigation of the soil microfungus Eupenicillum parvum led to the isolation of two new compounds: a chromone derivative euparvione (1) and a new mycophenolic derivative euparvilactone (2), as well as thirteen known compounds. The structures of the new compounds were elucidated by means of extensive IR, NMR, and MS data and by comparison of data reported in the literature. The structure of the known compound 6 was confirmed by X-ray crystallography. Several isolated compounds were evaluated for in vitro binding assays using opioid receptors (subtypes δ, κ, and µ) and cannabinoid receptors (CB1 and CB2). Compound 10 displayed the best selective µ-opioid receptor and CB1 receptor binding affinities showing values of 47% and 52% at a 10 µM concentration, respectively. These findings provide insight into the potential therapeutic utility of this class of compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0033-1351099DOI Listing

Publication Analysis

Top Keywords

vitro binding
8
cannabinoid receptors
8
compounds
5
secondary metabolites
4
metabolites eupenicillium
4
eupenicillium parvum
4
parvum vitro
4
binding affinity
4
affinity human
4
human opioid
4

Similar Publications

A series of Dehydroabietylamine (DHAA) C-ring Schiff derivatives, L3-L20, were synthesized and their in vitro cytotoxic activity against the human tumor cell lines cervix HeLa, breast MCF-7, lung A549, liver HepG2, and the nonmalignant cell line umbilical vein HUVEC was investigated. Most of the compounds showed varying degrees of anticancer activity against HeLa cell lines while demonstrating lower toxicity to normal HUVEC cells compared to DHAA and doxorubicin (DOX), especially compound L19, which not only enhanced the anticancer activity of DHAA, but also significantly reduced the toxicity to normal cells, achieving a selectivity index (SI) 118 times higher than that of DHAA and 245 times higher than that of DOX. In addition, compound L19 induced apoptosis in HeLa cells in a dose-dependent manner and arrested the cell cycle in S phase.

View Article and Find Full Text PDF

Background: Iduronate-2-sulfatase (IDS) deficiency (MPS II; Hunter syndrome) is a disorder that exhibits peripheral and CNS pathology. The blood brain barrier (BBB) prevents systemic enzyme replacement therapy (ERT) from alleviating CNS pathology. We aimed to enable brain delivery of systemic ERT by using molecular BBB-Trojans targeting endothelial transcytosis receptors.

View Article and Find Full Text PDF

Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.

Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.

View Article and Find Full Text PDF

Chromosome segregation relies on kinetochores that assemble on specialized centromeric chromatin containing a histone H3 variant. In budding yeast, a single centromeric nucleosome containing Cse4 assembles at a sequence-defined 125 bp centromere. Yeast centromeric sequences are poor templates for nucleosome formation in vitro, suggesting the existence of mechanisms that specifically stabilize Cse4 nucleosomes in vivo.

View Article and Find Full Text PDF

GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding.

Nat Commun

January 2025

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.

The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!