In this work, the use of a nanoreactor is demonstrated to rapidly prepare monodisperse polymer nanoparticles in water-based dispersion consisting of 4-arm star polymer via the R-group RAFT approach. It is shown that by heating a nanoparticle assembler above its lower critical solution temperature (LCST), stabilized nanoparticles are formed that act as a template for the 4-arm star RAFT-mediated polymerization of styrene. Monodisperse nanoparticles of size (between 40 and 90 nm) containing monodisperse polymer of desired molecular weight (30-95 k) are obtained with little star-star coupling due to compartmentalization. The nanoreactor technique allows independent control over the size and molecular weight with a 4-arm star topology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201300665 | DOI Listing |
Biomacromolecules
December 2024
Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
Recently, we published a study demonstrating the promising structure-activity relationship of 4-arm star polymers toward bacterial cells and biofilms. The aim of this study was to increase the number of arms to determine if this could further enhance activity via the arm-first approach, which enables access to star structures with a higher number of arms. A library of amphiphilic diblock and miktoarm star polymers was successfully synthesized, and their biological properties were assessed.
View Article and Find Full Text PDFACS Macro Lett
August 2024
Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
Polymerization-induced self-assembly (PISA) during the synthesis of diblock copolymers has garnered considerable interest; however, architectures beyond diblock copolymers have scarcely been explored. Here, we studied PISA using 4- and 8-arm star polyethylene glycol (PEG), as well as 2-arm (linear) PEG, wherein each terminus of PEG was functionalized with a chain-transfer agent, holding a constant molar mass for each arm. Styrene was polymerized from each PEG terminus through reversible addition-fragmentation chain-transfer (RAFT) polymerization in an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF]), with a total solute concentration of 40 wt %.
View Article and Find Full Text PDFAdv Healthc Mater
July 2024
Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA.
The tumor uptake of large non-targeted nanocarriers primarily occurs through passive extravasation, known as the enhanced permeability and retention (EPR) effect. Prior studies demonstrated improved tumor uptake and retention of 4-arm 40 kDa star polyethylene glycol (StarPEG) polymers for cancer imaging by adding prostate-specific membrane antigen (PSMA) targeting small molecule ligands. To test PSMA-targeted delivery and therapeutic efficacy, StarPEG nanodrugs with/without three copies of PSMA-targeting ligands, ACUPA, are designed and synthesized.
View Article and Find Full Text PDFJ Mater Chem B
April 2024
Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.
Thermoresponsive shape memory polymers (SMPs) prepared from UV-curable poly(ε-caprolactone) (PCL) macromers have the potential to create self-fitting bone scaffolds, self-expanding vaginal stents, and other shape-shifting devices. To ensure tissue safety during deployment, the shape actuation temperature (, the melt transition temperature or of PCL) must be reduced from ∼55 °C that is observed for scaffolds prepared from -PCL-DA ( ∼ 10 kg mol). Moreover, increasing the rate of biodegradation would be advantageous, facilitating bone tissue healing and potentially eliminating the need for stent retrieval.
View Article and Find Full Text PDFJ Am Chem Soc
March 2024
Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Biology achieves remarkable function through processes arising from spontaneous or transient liquid-liquid phase separation (LLPS) of proteins and other biomolecules. While polymeric systems can achieve similar phenomena through simple or complex coacervation, LLPS with supramolecular materials has been less commonly shown. Functional applications for synthetic LLPS systems are an expanding area of emphasis, with particular focus on capturing the transient and dynamic state of these structures for use in biomedicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!