A degradable poly(ethylene glycol)-diacrylate (PEGDA) hydrogel system was developed using simple macromer formulations and visible light initiated thiol-acrylate photopolymerization. In addition to PEGDA, other components in this gelation system include eosin-Y as a photo-sensitizer, bi-functional thiol (dithiothreitol, DTT) as a dual-purpose co-initiator and cross-linker, and N-vinylpyrrolidone (NVP) as a co-monomer. Gelation was achieved through a mixed-mode step-chain growth polymerization mechanism under bright visible light exposure. Increasing photo-sensitizer or NVP concentrations accelerated photo-crosslinking and increased final gel stiffness. Increasing bi-functional thiol content in the prepolymer solution only increased gel stiffness to some degree. As the concentration of thiol surpassed certain range, thiol-mediated chain-transfer events caused thiol-acrylate gels to form with lower degree of cross-linking. Pendant peptide, such as integrin ligand RGDS, was more effectively immobilized in the network via a thiol-acrylate reaction (using thiol-bearing peptide Ac-CRGDS. Underline indicates cross-linkable motif) than through homo-polymerization of acrylated peptide (e.g., acryl-RGDS). The incorporation of pendant peptide comes with the expense of a lower degree of gel cross-linking, which was rectified by increasing co-monomer NVP content. Without the use of any readily degradable macromer, these visible light initiated mixed-mode cross-linked hydrogels degraded hydrolytically due to the formation of thiol-ether-ester bonds following thiol-acrylate reactions. An exponential growth relationship was identified between the hydrolytic degradation rate and bifunctional thiol content in the prepolymer solution. Finally, we evaluated the cytocompatibility of these mixed-mode cross-linked degradable hydrogels using in situ encapsulation of hepatocellular carcinoma Huh7 cells. Encapsulated Huh7 cells remained alive and proliferated as time to form cell clusters. The addition of NVP at a higher concentration (0.3%) did not affect Huh7 cell viability but resulted in reduction of cell metabolic activity, which was accompanied by an elevated urea secretion from the encapsulated cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.35044 | DOI Listing |
Chemphyschem
January 2025
South China University of Technology School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, 381 Wushan Road, 510640, Guangzhou, CHINA.
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials possess unique advantages of high-efficiency and narrowband emission, which have rapidly occupied an important position in the field of organic light-emitting diodes (OLEDs). In recent years, significant advancements have been made in the development of MR-TADF materials, particularly in achieving spectral narrowing for high-color-purity OLED applications. Based on diverse MR-TADF molecular skeletons, this review summarizes the primary molecular strategies to narrow spectrum by suppressing structural relaxation and intermolecular interactions.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
Background: Bed bugs are blood-feeders that rapidly proliferate into large indoor infestations. Their bites can cause allergies, secondary infections and psychological stress, among other problems. Although several tactics for their management have been used, bed bugs continue to spread worldwide wherever humans reside.
View Article and Find Full Text PDFChemSusChem
January 2025
CSIR Central Glass & Ceramic Research Institute, EMDD, 196 Raja S C Mullick Road, 700032, Kolkata, INDIA.
The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.
View Article and Find Full Text PDFHealth Econ
January 2025
Big Data Analysis Department, Central Bank of Chile, Santiago, Chile.
Under the evidence that the Daylight Saving Time (DST) regime does not accomplish its primary goal of saving energy, I analyze one of the main side effects, automobile accidents in Chile between 2002 and 2018. I use a Regression Discontinuity Design (RDD) exploiting the discrete nature of the transition into DST and a Difference-in-Difference (DID) approach, taking advantage of the changes in dates that the policy starts and ends over the years. I find a 2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Xi'an Jiaotong University, School of Chemical Engineering and Technology, CHINA.
We report herein two families of porous coordination clusters (PCCs) with 216 nuclearity (M120RE96 or PCC-216MR) and 300 nuclearity (Co144Gd156 or PCC-300CG). For the first family M could be either nickel or cobalt, and RE = Pr, Nd, Sm, Eu, and Gd; while the latter features the highest nuclearity of transition-rare earth metal clusters. Characterized by their cube-like, hollow structures, these clusters exhibit the ability to absorb N2 and CO2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!