Scope: Exosomes/microvesicles are originated from multivesicular bodies that allow the secretion of endolysosome components out of the cell. In the present work, we investigated the effects of curcumin, a polyphenol, on exosomes/microvesicles secretion in different cells lines, using U18666A as a model of intracellular cholesterol trafficking impairment.

Methods And Results: In both HepG2 hepatocarcinoma cells and THP-1 differentiated macrophages, treatment with curcumin affected the size and the localization of endosome/lysosomes accumulated by U18666A, and reduced the cholesterol cell content. To ascertain the mechanism, we analyzed the incubation medium. Curcumin stimulated the release of cholesterol and the lysosomal β-hexosaminidase enzyme, as well as the exosome markers, flotillin-2 and CD63. Electron microscopy studies demonstrated the presence of small vesicles similar to exosomes/microvesicles in the secretion fluid. These vesicles harbored CD63 on their surface, indicative of their endolysosomal origin. These effects of curcumin were particularly intense in cells treated with U18666A.

Conclusion: These findings indicate that curcumin ameliorates the U18666A-induced endolysosomal cholesterol accumulation by shuttling cholesterol and presumably other lipids out of the cell via exosomes/microvesicles secretion. This action may contribute to the potential of curcumin in the treatment of lysosomal storage diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201300350DOI Listing

Publication Analysis

Top Keywords

exosomes/microvesicles secretion
16
effects curcumin
8
curcumin
7
cholesterol
6
exosomes/microvesicles
5
secretion
5
curcumin promotes
4
promotes exosomes/microvesicles
4
secretion attenuates
4
attenuates lysosomal
4

Similar Publications

Extracellular Vesicles in Implantation: Cross-Talk Between the Embryo and Endometrium.

Adv Anat Embryol Cell Biol

January 2025

Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA.

Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as pivotal mediators of intercellular communication. Embryo implantation is a critical process in early pregnancy and requires communication between the embryo and maternal uterus. EVs are important in coordinating the communication between the embryo and maternal uterus.

View Article and Find Full Text PDF

NK cells-derived extracellular vesicles potency in the B cell lymphoma biotherapy.

Front Immunol

December 2024

Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.

Introduction: Extracellular vesicles of Natural Killer cells (NKEV) exert an antitumor effect towards hematopoietic and solid tumors and have an immune modulating effect, suggesting a promising role in immune and biotherapy. In this study, a continuation of our former works, we demonstrated a network by mass spectrometry analysis between NKEV protein cargo and antitumor effects. Human healthy NKEV, both exosomes and microvesicles, have a significant and direct cytotoxic effect against human B cell lymphoma in and conditions.

View Article and Find Full Text PDF

Exosomes and tissue engineering: A novel therapeutic strategy for nerve regenerative.

Tissue Cell

December 2024

Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. Electronic address:

Damage to nerves negatively impacts quality of life and causes considerable morbidity. Self-regeneration is a special characteristic of the nervous system, yet how successful regeneration is accomplished remains unclear. Research on nerve regeneration is advancing and accelerating successful nerve recovery with potential new approaches.

View Article and Find Full Text PDF

Extracellular vesicles role in radio(nuclide)therapy.

J Radiat Res

December 2024

Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Équipe Labellisée Ligue Contre le Cancer, 208 rue des apothicaires, 34298 Montpellier, France.

Conventional radiation therapy can restore the ability of cells to undergo immunogenic cell death. Recent preclinical studies suggest that targeted radionuclide therapy, which delivers radiation to tumors at a continuous low dose rate, also stimulates the immune system and offers a promising approach for overcoming resistance to immune checkpoint inhibitors. In this context, we examined the growing body of preclinical and clinical findings showing that the immune system can be activated by the release of extracellular vesicles from irradiated cells, contributing to the antitumor immunity.

View Article and Find Full Text PDF

Cells can communicate with neighboring and more distant cells by secretion of extracellular vesicles (EVs). EVs are lipid bilayer membrane-bound structures that can be packaged with proteins, nucleic acids and lipids that mediate cell-cell signaling. EVs are increasingly recognized to play numerous important roles in both normal physiological processes and pathological conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!