Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report that photoluminescence of doped quantum dots (Qdots)-which was otherwise lost in the oxidized form of the dopant-could be recovered in chemical or cellular reducing environment. For example, as-synthesized Cu(2+)-doped zinc sulfide (ZnS) Qdots in water medium showed weak emission with a peak at 420 nm, following excitation with UV light (320 nm). However, addition of reducing agent led to the appearance of green emission with a peak at 540 nm and with quantum yield as high as 10%, in addition to the weak peak now appearing as a shoulder. The emission disappeared in the presence of an oxidizing agent or with time under ambient conditions. X-Ray photoelectron spectroscopic (XPS) and electron spin resonance (ESR) measurements suggested the presence of Cu(2+) in the as-synthesized Qdots, while formation of its reduced form was indicated (by ESR results) following treatment with a reducing agent. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies confirmed the formation of ZnS nanocrystals, the size and shape of which did not undergo any change in the presence of a reducing or oxidizing agent. Nanoparticulate forms of the Qdots and chitosan (a biopolymer) composite exhibited similar emission characteristics. Interestingly, when mammalian cancer cells or non-cancerous cells were treated with the composite nanoparticles (NPs), characteristic green fluorescence was observed. Further, the intensity of the fluorescence diminished when the cells were treated later with pyrogallol-a known reactive oxygen species generator. Overall, the results indicated a new way of probing the reducing nature of mammalian cells using the emission properties of the Qdot based on the redox state of its dopant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr05280j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!