Direct detection of ultralow trace amounts of isocyanates in air using a fluorescent conjugated polymer.

Chem Commun (Camb)

Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.

Published: January 2014

A fluorescence sensory polymer containing the pentiptycene and tetraphenylethylene units linked by acetylene was synthesized for direct detection of isocyanates in air. Eight industrially available aliphatic and aromatic isocyanates were tested. The polymer film shows a rapid fluorescence quenching response to any type of isocyanates with a ppt level of detection limit, which is much lower than the permissible exposure limit of 5 ppb.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc47934jDOI Listing

Publication Analysis

Top Keywords

direct detection
8
isocyanates air
8
detection ultralow
4
ultralow trace
4
trace amounts
4
isocyanates
4
amounts isocyanates
4
air fluorescent
4
fluorescent conjugated
4
conjugated polymer
4

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.

View Article and Find Full Text PDF

This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.

View Article and Find Full Text PDF

Integrating social learning, social networks, and non-parental transgenerational plasticity.

Trends Ecol Evol

January 2025

Department of Environmental Science and Policy, University of California, One Shields Ave, Davis, CA 95616, USA.

Transgenerational plasticity (TGP) has largely focused on how parental exposure to ecological conditions shapes the phenotypes of future generations. However, organisms acquire information about their ecological environment via social learning, which can also shape TGP in profound ways. We demonstrate that non-parents alter how parents detect and respond to environmental cues in ways that spillover to affect offspring, non-parents influence offspring even without direct physical interactions, and parental cues received by offspring can alter the phenotypes of other juveniles.

View Article and Find Full Text PDF

Altered thrombin generation with prothrombin complex concentrate is not detected by viscoelastic testing: an in vitro study.

Br J Anaesth

January 2025

Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Department of Anesthesiology and Intensive Care Medicine AUVA Trauma Center Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria.

Background: Bleeding guidelines currently recommend use of viscoelastic testing (VET) to direct haemostatic resuscitation in severe haemorrhage. However, VET-derived parameters of clot initiation, such as clotting time (CT) and activated clotting time (ACT), might not adequately reflect a clinically relevant interaction of procoagulant and anticoagulant activity, as revealed by thrombin generation assays. The aim of this study was to evaluate the ability of CT and ACT to indicate thrombin generation activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!