We report on quantifiable depth-dependent contact resonance AFM (CR-AFM) measurements over polystyrene-polypropylene (PS-PP) blends to detail surface and sub-surface features in terms of elastic modulus and mechanical dissipation. The depth-dependences of the measured parameters were analyzed to generate cross-sectional images of tomographic reconstructions. Through a suitable normalization of the measured contact stiffness and indentation depth, the depth-dependence of the contact stiffness was analyzed by linear fits to obtain the elastic moduli of the materials probed. Besides elastic moduli, the contributions of adhesive forces (short-range versus long-range) to contact on each material were determined without a priori assumptions. The adhesion analysis was complemented by an unambiguous identification of distinct viscous responses during adhesion and in-contact deformation from the dissipated power during indentation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr04981gDOI Listing

Publication Analysis

Top Keywords

contact resonance
8
contact stiffness
8
elastic moduli
8
contact
5
nanoscale mechanics
4
mechanics tomographic
4
tomographic contact
4
resonance atomic
4
atomic force
4
force microscopy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!