Modeling lineage and phenotypic diversification in the New World monkey (Platyrrhini, Primates) radiation.

Mol Phylogenet Evol

División Antropología, Museo de La Plata, Universidad Nacional de La Plata, CONICET, Paseo del Bosque s/n, 1900 La Plata, Argentina. Electronic address:

Published: January 2015

Adaptive radiations that have taken place in the distant past can now be more thoroughly studied with the availability of large molecular phylogenies and comparative data drawn from extant and fossil species. Platyrrhines are a good example of a major mammalian evolutionary radiation confined to a single continent, involving a relatively large temporal scale and documented by a relatively small but informative fossil record. Here, we present comparative evidence using data on extant and fossil species to explore alternative evolutionary models in an effort to better understand the process of platyrrhine lineage and phenotypic diversification. Specifically, we compare the likelihood of null models of lineage and phenotypic diversification versus various models of adaptive evolution. Moreover, we statistically explore the main ecological dimension behind the platyrrhine diversification. Contrary to the previous proposals, our study did not find evidence of a rapid lineage accumulation in the phylogenetic tree of extant platyrrhine species. However, the fossil-based diversity curve seems to show a slowdown in diversification rates toward present times. This also suggests an early high rate of extinction among lineages within crown Platyrrhini. Finally, our analyses support the hypothesis that the platyrrhine phenotypic diversification appears to be characterized by an early and profound differentiation in body size related to a multidimensional niche model, followed by little subsequent change (i.e., stasis).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2013.11.008DOI Listing

Publication Analysis

Top Keywords

phenotypic diversification
16
lineage phenotypic
12
extant fossil
8
fossil species
8
diversification
6
modeling lineage
4
phenotypic
4
diversification monkey
4
monkey platyrrhini
4
platyrrhini primates
4

Similar Publications

Orchids constitute one of the most diverse families of angiosperms, yet their genome evolution and diversity remain unclear. Here we construct and analyse chromosome-scale de novo assembled genomes of 17 representative accessions spanning 12 sections in Dendrobium, one of the largest orchid genera. These accessions represent a broad spectrum of phenotypes, lineages and geographical distributions.

View Article and Find Full Text PDF

Geographic Variation in Signal Preferences in the Tropical Katydid .

Biology (Basel)

December 2024

Department of Biological Sciences, University of Missouri, 207 Tucker Hall, Columbia, MO 65211, USA.

In communication systems, the signal and preference for the signal have to match, limiting phenotypic variation. Yet, communication systems evolve, but the mechanisms of how phenotypic variation can come into existence while not disrupting the match are poorly understood. Geographic variation in communication can provide insights into the diversification of these systems.

View Article and Find Full Text PDF

Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.

View Article and Find Full Text PDF

Adaptive radiations are characterized by an increase in species and/or phenotypic diversity as organisms fill open ecological niches. Often, the putative adaptive radiation has been studied without explicit comparison to the patterns and rates of evolution of closely related clades, leaving open the question whether notable changes in evolutionary process indeed occurred at the origin of the group. Anolis lizards are an oft-used model for investigating the tempo and mode of adaptive radiations.

View Article and Find Full Text PDF

Millets for a sustainable future.

J Exp Bot

December 2024

Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.

Our current agricultural system faces a perfect storm-climate change, burgeoning population, and unpredictable outbreaks like COVID-19 disrupt food production, particularly for vulnerable populations in developing countries. A paradigm shift in agriculture practices is needed to tackle these issues. One solution is the diversification of crop production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!