Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned.

Download full-text PDF

Source
http://dx.doi.org/10.1260/2040-2295.4.4.465DOI Listing

Publication Analysis

Top Keywords

pattern recognition
8
artificial neural
8
neural networks
8
networks support
8
support vector
8
vector machines
8
clinical applications
8
electrocardiogram pattern
4
recognition analysis
4
analysis based
4

Similar Publications

Object recognition is fundamental to how we interact with and interpret the world around us. The human amygdala and hippocampus play a key role in object recognition, contributing to both the encoding and retrieval of visual information. Here, we recorded single-neuron activity from the human amygdala and hippocampus when neurosurgical epilepsy patients performed a one-back task using naturalistic object stimuli.

View Article and Find Full Text PDF

Neural decoding reveals dynamic patterns of visual chunk memory processes.

Brain Res Bull

January 2025

Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China; Faculty of Health Sciences, University of Macau, Macau SAR, China. Electronic address:

Chunk memory constitutes the basic unit that manages long-term memory and converts it into immediate decision-making processes, it remains unclear how to interpret and organize incoming information to form effective chunk memory. This paper investigates electroencephalography (EEG) patterns from the perspective of time-domain feature extraction using chunk memory in visual statistical learning and combines time-resolved multivariate pattern analysis (MVPA). The GFP and MVPA results revealed that chunk memory processes occurred during specific time windows in the learning phase.

View Article and Find Full Text PDF

Purpose: To evaluate visibility of a sub-band posterior to the external limiting membrane (ELM) and assess its age-associated variation.

Methods: In a retrospective cross-sectional study, normal eyes were imaged using a high-resolution spectral-domain optical coherence tomography (SD-OCT) prototype (2.7-µm axial resolution).

View Article and Find Full Text PDF

Purpose: Breast cancer remains one of the most prevalent cancers globally, necessitating effective early screening and diagnosis. This study investigates the effectiveness and generalizability of our recently proposed data augmentation technique, attention-guided erasing (AGE), across various transfer learning classification tasks for breast abnormality classification in mammography.

Methods: AGE utilizes attention head visualizations from DINO self-supervised pretraining to weakly localize regions of interest (ROI) in images.

View Article and Find Full Text PDF

Objective: This study aimed to explore the utilization of a fine-tuned language model to extract expressions related to the Age-Friendly Health Systems 4M Framework (What Matters, Medication, Mentation, and Mobility) from nursing home worker text messages, deploy automated mapping of these expressions to a taxonomy, and explore the created expressions and relationships.

Materials And Methods: The dataset included 21 357 text messages from healthcare workers in 12 Missouri nursing homes. A sample of 860 messages was annotated by clinical experts to form a "Gold Standard" dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!