TRP-channels are the most prominent family of ligand-gated ion channels for pain perception. In sensory neurons, TRPV1-V4, TRPA1 and TRPM8 are expressed and are responsible for the conversion of external stimuli to painful sensations. Under pathophysiological conditions, excessive activity of TRP-channels leads to mechanical allodynia and thermal hyperalgesia. Among the endogenous TRP-channel sensitizers, activators and inhibitors, more than 50 arachidonic acid- and linoleic acid-metabolites from the COX-, LOX- and CYP-pathways, as well as lysophospholipids and isoprenoids can be found. As a consequence, these lipids represent the vast majority of endogenous TRP-channel modulators in sensory neurons. Although the precise mechanisms of TRP-channel modulation by most lipids are still unknown, it became clear that lipids can either bind directly to the target TRP-channel or modulate TRP-channels indirectly by activating G-protein coupled receptors. Thus, TRP-channels seem to be key sensors for lipids, integrating and interpreting incoming signals from the different metabolic lipid pathways. Here, we discuss the specific properties of the currently known endogenous lipid-derived TRP-channel modulators concerning their ability to activate or inhibit TRP-channels, the molecular mechanisms of lipid/TRP-channel interactions and specific TRP-regulatory characteristics of the individual lipid families.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plipres.2013.11.002 | DOI Listing |
Small
January 2025
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
The comparison between traditional Chinese medicine Jinzhen oral liquid (JZOL) and Western medicine in treating children with acute bronchitis (AB) showed encouraging outcomes. This trial evaluated the efficacy and safety of the JZOL for improving cough and expectoration in children with AB. 480 children were randomly assigned to take JZOL or ambroxol hydrochloride and clenbuterol hydrochloride oral solution for 7 days.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
Mechanical asphyxia presents a challenging diagnostic issue in forensic medicine due to its often covert nature, and the signs visible during an autopsy are usually not specific. Despite some progress in understanding hypoxia's effects, traditional methods' inherent limitations might overlook new biomarkers in mechanical asphyxia. This study employed 4D-DIA proteomics to explore the protein expression profiles of cardiac samples under conditions of mechanical asphyxia.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2024
NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK. Electronic address:
Idiopathic pulmonary fibrosis (IPF) is a severe lung disease affecting around 5 million people globally, with a median survival of 3-4 years. Characterized by excessive scarring of lung tissue, IPF results from the accumulation of myofibroblasts that deposit extracellular matrix (ECM), causing fibrosis. Current treatments, pirfenidone and nintedanib, slow the disease but do not stop its progression.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China.. Electronic address:
Background: Pain is the most critical symptom of knee osteoarthritis(KOA), which seriously affects the quality of life of patients. Xibining (XBN), a traditional herbal compound, has achieved good results in the clinical treatment of KOA, and its mechanism of action is worth exploring in depth.
Objective: In vivo and in vitro models of KOA were constructed, and the potential drug action mechanism of XBN in improving osteoarthritis pain was explored in combination with transcriptomics.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!