Entrapment of chromosomes by condensin rings prevents their breakage during cytokinesis.

Dev Cell

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany.

Published: November 2013

Successful segregation of chromosomes during mitosis and meiosis depends on the action of the ring-shaped condensin complex, but how condensin ensures the complete disjunction of sister chromatids is unknown. We show that the failure to segregate chromosome arms, which results from condensin release from chromosomes by proteolytic cleavage of its ring structure, leads to a DNA damage checkpoint-dependent cell-cycle arrest. Checkpoint activation is triggered by the formation of chromosome breaks during cytokinesis, which proceeds with normal timing despite the presence of lagging chromosome arms. Remarkably, enforcing condensin ring reclosure by chemically induced dimerization just before entry into anaphase is sufficient to restore chromosome arm segregation. We suggest that topological entrapment of chromosome arms by condensin rings ensures their clearance from the cleavage plane and thereby avoids their breakage during cytokinesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2013.10.018DOI Listing

Publication Analysis

Top Keywords

chromosome arms
12
condensin rings
8
breakage cytokinesis
8
arms condensin
8
condensin
6
chromosome
5
entrapment chromosomes
4
chromosomes condensin
4
rings prevents
4
prevents breakage
4

Similar Publications

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

The genome composition of intermediate wheatgrass (IWG; (Host) Barkworth and D.R. Dewey; 2n = 6x = 42) is complex and remains to be a subject of ongoing investigation.

View Article and Find Full Text PDF

Anderson-Fabry disease is a hereditary, progressive, multisystemic lysosomal storage disorder caused by a functional deficiency of the enzyme α-galactosidase A (α-GalA). This defect is due to mutations in the gene, located in the long arm of the X chromosome (Xq21-22). Functional deficiency of the α-GalA enzyme leads to reduced degradation and accumulation of its substrates, predominantly globotriaosylceramide (Gb3), which accumulate in the lysosomes of numerous cell types, giving rise to the symptomatology.

View Article and Find Full Text PDF

Barley yellow dwarf (BYD) is one of the most serious viral diseases in cereal crops worldwide. Identification of quantitative trait loci (QTLs) underlining wheat resistance to barley yellow dwarf virus (BYDV) is essential for breeding BYDV-tolerant wheat cultivars. In this study, a recombinant inbred line (RIL) population was developed from the cross between Jagger (PI 593688) and a Jagger mutant (JagMut1095).

View Article and Find Full Text PDF

Premature senescence has a significant impact on the yield and quality of wheat crops. The process is controlled by multiple and intricate genetic pathways and regulatory elements, whereby the discovery of additional mutants provides important insights into the molecular basis of this important trait. Here, we developed a premature senescence wheat mutant je0874, its leaves started to show yellow before heading stage; with plant growth and development, the degree of yellowing worsened rapidly, and chlorophyll content in flag leaf was reduced by 93.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!