Aim: B cells are likely to play critical roles in the pathogenesis of systemic lupus erythematosus (SLE). Our aim was to investigate the role of peripheral CD24(hi) CD27(+) CD19(+) B cells in Chinese patients with new-onset SLE.
Method: Peripheral CD24(hi) CD27(+) CD19(+) B cells were analyzed in 55 new-onset lupus and 36 healthy controls by flow cytometry. All SLE cases were treated with prednisolone and hydroxychloroquine during a 1-year follow-up. Thirteen cases were added with cyclophosphamide or mycophenolate mofetil. The CD24(hi) CD27(+) CD19(+) B cells were analyzed at days 0, 7, 14 and months 1, 3, 6, 9 and 12. Interleukin-10 (IL-10)-producing B cell was detected in eight naïve lupus and 10 healthy controls.
Results: Compared to healthy controls, the frequency and number of primary circulating CD24(hi) CD27(+) CD19(+) B cells was significantly reduced in SLE cases (8.22 ± 3.48% vs. 31.67 ± 5.53%, P < 0.0001; 4.04 ± 2.85 vs. 38.66 ± 10.22 10(3) cells/mL, P = 0.0001) before treatment; IL-10(+) CD19(+) B cells and IL-10(+) CD24(hi) CD27(+) CD19(+) B cells also decreased in SLE. Interestingly, primary CD24(hi) CD27(+) CD19(+) B cells inversely correlated with SLE disease activity index (SLEDAI) score. Patients with arthritis and hematologic disorders had a lower primary CD24(hi) CD27(+) CD19(+) B cells. In 48 SLE cases who finished the 1-year follow-up, the frequency and number of CD24(hi) CD27(+) CD19(+) B cells increased from 8.26 ± 3.61% to 25.51 ± 4.56%; 3.99 ± 2.86 to 28.64 ± 11.81 10(3) cells/mm(3) (P < 0.0001), accompanied by a significantly decreased SLEDAI score. Of note, CD24(hi) CD27(+) CD19(+) B cells decreased in some flare cases with an elevated SLEDAI score.
Conclusion: These results demonstrate that a lower primary CD24(hi) CD27(+) CD19(+) B cells may be an immunologic aspect of new-onset SLE. CD24(hi) CD27(+) CD19(+) B cells may be a useful tool to evaluate lupus activity and monitor the response to therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1756-185X.12229 | DOI Listing |
Front Immunol
January 2025
Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States.
While durable antibody responses from long-lived plasma cell (LLPC) populations are important for protection against pathogens, LLPC may be harmful if they produce antibodies against self-proteins or self-nuclear antigens as occurs in autoimmune diseases such as systemic lupus erythematosus (SLE). Thus, the elimination of autoreactive LLPC may improve the treatment of antibody-driven autoimmune diseases. However, LLPC remain a challenging therapeutic target.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
January 2025
Laboratory of Cancer Immunotherapy and Immunology, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Adoptive cell therapy (ACT) is a type of immunotherapy in which autologous or allogeneic immune cells, such as tumor-infiltrating lymphocytes or engineered lymphocytes, are infused into patients with cancer to eliminate malignant cells. Recently, autologous T cells modified to express a chimeric antigen receptor (CAR) targeting CD19 showed a positive response in clinical studies for hematologic malignancies and have begun to be used in clinical practice. This article discusses the current status and promise of ACT research in hepatocellular carcinoma (HCC), focusing on challenges in off-the-shelf ACT using primary cells or induced pluripotent stem cells (iPSCs) with or without genetic engineering.
View Article and Find Full Text PDFCytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and idiopathic inflammatory myositis (IIM) are autoimmune diseases managed with long-term immunosuppressive therapies. Hu19-CD828Z, a fully human anti-CD19 chimeric antigen receptor (CAR) with a CD28 costimulatory domain, is engineered to potently deplete B-cells. In this study, we manufactured Hu19-CD828Z CAR T-cells from peripheral blood of SLE, IIM, and SSc patients and healthy donors (HDs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!