Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Circulating progenitor cells (CPCs) improve cardiovascular function and organ perfusion by enhancing the capacities of endothelial repair and neovasculogenesis. This study investigates whether exercise regimens with/without hypoxia affect cardiac and muscular hemodynamics by modulating CPCs and angiogenic factors.
Methods: Forty sedentary males were randomly divided into hypoxic (HT, n=20) and normoxic (NT, n=20) training groups. The subjects were trained on a bicycle ergometer at 60%VO(2max) under 15% (HT) or 21% (NT) O2 conditions for 30 min daily, five days weekly for five weeks.
Results: After the five-week interventions, the HT group exhibited a larger improvement in aerobic capacity than the NT group. Furthermore, the HT regimen (i) enhanced cardiac output (Q(H)) and perfusion (Q(M))/oxygenation of vastus lateralis during exercise; (ii) increased levels of CD34(+)/KDR(+)/CD117(+), CD34(+)/KDR(+)/CD133(+), and CD34(+)/KDR(+)/CD31(+) cells in blood; (iii) promoted the proliferative capacity of these CPC subsets, and (iv) elevated plasma nitrite/nitrate, stromal cell-derived factor-1 (SDF-1), matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor-A (VEGF-A) concentrations. Despite the lack of changes in Q(H) and the number or proliferative capacity of CD34(+)/KDR(+)/CD117(+) or CD34(+)/KDR(+)/CD31(+) cells, the NT regimen elevated both Q(M) and plasma nitrite/nitrate levels and suppressed the shedding of endothelial cells (CD34(-)/KDR(+)/phosphatidylserine(+) cells).
Conclusions: The HT regimen improves cardiac and muscular hemodynamic adaptations, possibly by promoting the mobilization/function of CPCs and the production of angiogenic factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijcard.2013.11.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!