Rationale: Recent publications have reported that imatinib forms cyanide and methoxylamine adducts in vitro but without detail structural identification. The current work reports the identification of seven cyanide adducts that elucidate the bioactivation pathways and may provide hints for observed clinical adverse effects of the drug.
Methods: Imatinib was incubated with human liver microsomal proteins in the presence of a NADPH-regeneration system and the trapping agents reduced GSH, potassium cyanide and methoxylamine. Samples were analyzed by high-performance liquid chromatography (HPLC) coupled with a LTQ-Orbitrap data collection system. Chemical structures were determined and/or postulated based on data-dependent high-resolution tandem mass spectrometric (MS(n)) exact mass measurements in both positive and negative scan modes, as well as in combination with hydrogen-deuterium exchange (HDX).
Results: GSH and methoxylamine conjugates were either not detected or were in insufficient quantities for characterization. However, seven cyanide conjugates were identified, indicating that the piperazine and p-toluidine partial structures in imatinib can become bioactivated and subsequently trapped by the nucleophile cyanide ion. The reactive intermediates were postulated as imine and imine-carbonyl conjugate (α,β-unsaturated) structures on the piperazine ring, and imine-methide on the p-toluidine partial structure.
Conclusions: Chemical structures of seven cyanide adducts of imatinib have been identified or proposed based on high-resolution MS/MS data. Mechanisms for the formation of the conjugates were also proposed. The findings may help to understand the mechanism of hepatotoxicity of imatinib in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.6758 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
February 2025
Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, Damietta University, New Damietta, Damietta, Egypt. Electronic address:
Undersea Hyperb Med
September 2024
Hyperbaric Medicine Division, Intermountain LDS Hospital, Salt Lake City, Utah.
Despite established exposure limits and safety standards, and the availability of carbon monoxide (CO) alarms, each year an estimated 50,000 people in the United States visit emergency departments for CO poisoning. Carbon monoxide poisoning can occur from brief exposures to high levels of CO or from longer exposures to lower levels. If the CO exposure is sufficiently high, unconsciousness and death occur quickly, and without symptoms.
View Article and Find Full Text PDFDrug Metab Pharmacokinet
August 2024
Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan. Electronic address:
Nintedanib is used to treat idiopathic pulmonary fibrosis, systemic sclerosis, interstitial lung disease, and progressive fibrotic interstitial lung disease. It is primarily cleared via hepatic metabolism, hydrolysis, and glucuronidation. In addition, formation of the iminium ion, a possible reactive metabolite, was predicted based on the chemical structure of nintedanib.
View Article and Find Full Text PDFAnal Methods
July 2024
Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India.
A simple chemo-dosimeter VDP2 bearing a ferrocene moiety was designed, synthesized, and characterized, and exhibited both chromogenic and electrochemical responses selectively for CN in HO-DMSO (9 : 1, v/v) medium. The probe VDP2 showed an instantaneous color change from colorless to yellow with CN that can readily be observed visually. The deprotonation of the benzimidazole -NH, followed by nucleophilic addition of CN to the olefinic C-atom, as evidenced by H and C NMR titration experiments, caused the colorimetric and electrochemical responses.
View Article and Find Full Text PDFJ Environ Manage
July 2024
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China. Electronic address:
The newly discovered ClO• and BrO• contribute to pollutant degradation in advanced oxidation processes, while acrylamide (AM) and acrylonitrile (ACN) are always the focus of scientists concerned due to their continuous production and highly toxic effects. Moreover, various particles with a graphene-like structure are the companions of AM/ACN in dry/wet sedimentation or aqueous phase existence, which play an important role in heterogeneous oxidation. Thus, this work focuses on the reaction mechanism and environmental effect of AM/ACN with ClO•/BrO•/HO• in the water environment under the influence of graphene (GP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!