Synthetic strategies for radioligands for in vivo imaging of brain cannabinoid type-1 receptors.

J Labelled Comp Radiopharm

Laboratory for Radiopharmacy, IMIR KU Leuven, O&N2, Herestraat 49, Box 821, BE-3000, Leuven, Belgium.

Published: July 2014

Despite its abundant expression in the brain, the cannabinoid type-1 (CB1) receptor was discovered only in 1988. During the last decade, efforts from several research groups have made it possible to visualize the CB1 receptor in vivo to unravel its role in the brain physiology and pathology. This review discusses strategies for (radio)synthesis of radioligands for in vivo imaging of CB1 receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jlcr.3017DOI Listing

Publication Analysis

Top Keywords

radioligands vivo
8
vivo imaging
8
brain cannabinoid
8
cannabinoid type-1
8
cb1 receptor
8
synthetic strategies
4
strategies radioligands
4
imaging brain
4
type-1 receptors
4
receptors despite
4

Similar Publications

FAP-targeted radioligand therapy with Ga/Lu-DOTA-2P(FAPI) enhance immunogenicity and synergize with PD-L1 inhibitors for improved antitumor efficacy.

J Immunother Cancer

January 2025

Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China

Background: Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, Ga/Lu-DOTA-2P(FAPI), which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining Ga/Lu-DOTA-2P(FAPI) radioligand therapy with PD-1/PD-L1 immunotherapy.

View Article and Find Full Text PDF

Radioactive prostate-specific membrane antigen (PSMA)-targeting agents are clinically useful for the diagnosis and treatment of patients with PSMA-positive metastatic castration-resistant prostate cancer (mCRPC). Neuroendocrine-differentiated prostate cancer (NEPC), a highly aggressive subtype that is strongly associated with a poor clinical prognosis, may present with reduced PSMA expression and evade detection with PSMA-targeted agents. Several studies have shown elevated uptake of somatostatin receptor 2 (SSTR2) ligands in PSMA-negative NEPC.

View Article and Find Full Text PDF

The C-X-C chemokine receptor 4 (CXCR4) is highly upregulated in most cancers, making it an ideal target for delivering radiation therapy to tumors. We previously demonstrated the feasibility of targeting CXCR4 in vivo using a radiolabeled derivative of EPI-X4, an endogenous CXCR4 antagonist, named DOTA-K-JM#173. However, this derivative showed undesirable accumulation in the kidneys, which would limit its clinical use.

View Article and Find Full Text PDF

Purpose: Temporal lobe epilepsy (TLE) is a brain network disorder closely associated with synaptic loss and has a genetic basis. However, the in vivo whole-brain synaptic changes at the network-level and the underlying gene expression patterns in patients with TLE remain unclear.

Methods: In this study, we utilized a positron emission tomography with the synaptic vesicle glycoprotein 2 A radioligand [F]SynVesT-1 cohort and two independent transcriptome datasets to investigate the topological properties of the synaptic density similarity network (SDSN) in TLE and its correlation with significantly dysregulated risk genes.

View Article and Find Full Text PDF

: Dual-modality probes, combining positron emission tomography (PET) with fluorescence imaging (FI) capabilities in a single molecule, are of high relevance for the accurate staging and guided resection of tumours. We herein present a pair of candidates targeting the cholecystokinin-2 receptor (CCK2R), namely [Ga]Ga-CyTMG and [Ga]Ga-CyFMG. In these probes, the SulfoCy5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!