Increasing evidence indicates that potassium (K+) channels play important roles in the growth and development of human cancer. In the present study, we investigated the contribution of and the mechanism by which K+ channels control the proliferation and tumor development of U87-MG human glioma cells. A variety of K+ channel blockers and openers were used to differentiate the critical subtype of K+ channels involved. The in vitro data demonstrated that selective blockers of voltage-gated K+ (K(V)) channels or ATP-sensitive K+ (K(ATP)) channels significantly inhibited the proliferation of U87-MG cells, blocked the cell cycle at the G0/G1 phase and induced apoptosis. In the U87-MG xenograft model in nude mice, K(V) or K(ATP) channel blockers markedly suppressed tumor growth in vivo. Furthermore, electrophysiological results showed that KV or KATP channel blockers inhibited K(V)/K(ATP) channel currents as well as cell proliferation and tumor growth over the same concentration range. In contrast, iberiotoxin, a selective blocker of calcium-activated K+ channels, had no apparent effect on the cell proliferation, cell cycle or apoptosis of U87-MG cells. In addition, the results of fluorescence assays indicated that blockers of K(V) or K(ATP) channels attenuated intracellular Ca2+ signaling by blocking Ca2+ influx in U87-MG cells. Taken together, these data suggest that K(V) and K(ATP) channels play important roles in the proliferation of U87-MG cells and that the influence of K(V) and K(ATP) channels may be mediated by a Ca2+-dependent mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2013.2875DOI Listing

Publication Analysis

Top Keywords

katp channels
16
u87-mg cells
16
cell proliferation
12
channel blockers
12
channels
10
human glioma
8
channels play
8
play roles
8
proliferation tumor
8
proliferation u87-mg
8

Similar Publications

Analyzing the genetic architecture of hereditary forms of diabetes in different populations is a critical step toward optimizing diagnostic and preventive algorithms. This requires consideration of regional and population-specific characteristics, including the spectrum and frequency of pathogenic variants in targeted genes. As part of this study, we used a custom-designed NGS panel to screen for mutations in 28 genes associated with the pathogenesis of hereditary diabetes mellitus in 506 unrelated patients from Russia.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats.

J Physiol Sci

January 2025

Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan.

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer.

View Article and Find Full Text PDF

Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (K) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli.

View Article and Find Full Text PDF

The ATP-sensitive potassium (KATP) channels, composed of Kir6.2 and SUR1 subunits, are essential for glucose homeostasis. While the role of pancreatic KATP channels in regulating insulin secretion is well-documented, the specific contributions of neuronal KATP channels remain unclear due to challenges in precisely targeting neuronal subpopulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!