A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A genome-wide aberrant RNA splicing in patients with acute myeloid leukemia identifies novel potential disease markers and therapeutic targets. | LitMetric

A genome-wide aberrant RNA splicing in patients with acute myeloid leukemia identifies novel potential disease markers and therapeutic targets.

Clin Cancer Res

Authors' Affiliations: Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Bioinformatics and Computational Genomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada; Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Center for Cancer Systems Biology and Department of Genetics, Harvard Medical School, Boston University School of Medicine and Biomedical Engineering Department, Boston University, Boston, Massachusetts; Unité de Génomique du Myélome, Laboratoire UGM, University Hospital, CHU Rangueil, Toulouse, France; Hematology Laboratory, University Hospital; and INSERM U892, Nantes, France; Molecular Diagnostics Laboratory, Dana Farber Cancer Institute, Boston, Massachusetts; Biotique Systems Inc., www.biotiquesystems.com; Adult Leukemia Program, Dana Farber Cancer Institute, Boston, Massachusetts; Brigham and Women's Hospital, Boston, Massachusetts; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.

Published: March 2014

AI Article Synopsis

  • Researchers are trying to find better ways to treat acute myeloid leukemia (AML) because it's still considered incurable despite new treatments.
  • They studied how RNA splicing (which helps cells create different proteins) goes wrong in AML patients and what that could mean for finding new biomarkers and treatments.
  • They discovered that about 29% of genes are spliced differently in AML patients compared to healthy donors, which could help create new disease markers and lead to new treatments.

Article Abstract

Purpose: Despite new treatments, acute myeloid leukemia (AML) remains an incurable disease. More effective drug design requires an expanded view of the molecular complexity that underlies AML. Alternative splicing of RNA is used by normal cells to generate protein diversity. Growing evidence indicates that aberrant splicing of genes plays a key role in cancer. We investigated genome-wide splicing abnormalities in AML and based on these abnormalities, we aimed to identify novel potential biomarkers and therapeutic targets.

Experimental Design: We used genome-wide alternative splicing screening to investigate alternative splicing abnormalities in two independent AML patient cohorts [Dana-Farber Cancer Institute (DFCI) (Boston, MA) and University Hospital de Nantes (UHN) (Nantes, France)] and normal donors. Selected splicing events were confirmed through cloning and sequencing analysis, and than validated in 193 patients with AML.

Results: Our results show that approximately 29% of expressed genes genome-wide were differentially and recurrently spliced in patients with AML compared with normal donors bone marrow CD34(+) cells. Results were reproducible in two independent AML cohorts. In both cohorts, annotation analyses indicated similar proportions of differentially spliced genes encoding several oncogenes, tumor suppressor proteins, splicing factors, and heterogeneous-nuclear-ribonucleoproteins, proteins involved in apoptosis, cell proliferation, and spliceosome assembly. Our findings are consistent with reports for other malignances and indicate that AML-specific aberrations in splicing mechanisms are a hallmark of AML pathogenesis.

Conclusions: Overall, our results suggest that aberrant splicing is a common characteristic for AML. Our findings also suggest that splice variant transcripts that are the result of splicing aberrations create novel disease markers and provide potential targets for small molecules or antibody therapeutics for this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458245PMC
http://dx.doi.org/10.1158/1078-0432.CCR-13-0956DOI Listing

Publication Analysis

Top Keywords

alternative splicing
12
splicing
11
acute myeloid
8
myeloid leukemia
8
novel potential
8
disease markers
8
aml
8
aberrant splicing
8
splicing abnormalities
8
independent aml
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!