Neuregulin signaling in pieces--evolution of the gene family.

Curr Pharm Des

NRG Biotech, 24 Twin Circle Drive, Arlington, MA 02474.

Published: April 2015

Paracrine and juxtacrine signaling via proteins expressed on the cell surface are an integral part of metazoan biology. More than one-half billion years ago epidermal growth factor (EGF) and its cognate receptor formed a functional binding partnership, which has been conserved through evolution in essentially all eubilaterate members of the animal kingdom. Early chordates spawned offspring of these seminal genes to begin the creation of new gene families and an expanded cell-cell signaling network, which included the Neuregulin (NRG) ligands and the erbB receptors. First appearance of ancestral NRG, represented in a NRG4-like gene in the lancelet Branchiostoma floridae, appears to have: 1) occurred in the common chordate ancestor prior to the divergence of lancelets (amphioxus), and; 2) antedated the formation of the receptor gene family. Orthologues of NRG1 and multiple erbB receptors found in the sea lamprey Petromyzon marinus suggest that several key events, which were required to expand and diversify these gene families, occurred in the common ancestor of agnathostomes and jawed vertebrates. These important inventions surely played major roles in the acquisition of multiple apomorphic features of the emerging vertebrate lineage.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612819666131125152146DOI Listing

Publication Analysis

Top Keywords

gene family
8
gene families
8
erbb receptors
8
occurred common
8
gene
5
neuregulin signaling
4
signaling pieces--evolution
4
pieces--evolution gene
4
family paracrine
4
paracrine juxtacrine
4

Similar Publications

A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Our aim was to evaluate the regulation of messenger RNAs (mRNAs) and biological pathways by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in ischemic stroke. We employed weighted gene co-expression network analysis (WGCNA) to construct two co-expression networks for mRNAs with circRNAs and lncRNAs, respectively, to investigate their association with ischemic stroke. We compared the overlap of mRNAs and biological pathways in the stroke-associated modules of the two networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!