Conflicting patterns of population differentiation between the mitochondrial and nuclear genomes (mito-nuclear discordance) have become increasingly evident as multilocus data sets have become easier to generate. Incomplete lineage sorting (ILS) of nucDNA is often implicated as the cause of such discordance, stemming from the large effective population size of nucDNA relative to mtDNA. However, selection, sex-biased dispersal and historical demography can also lead to mito-nuclear discordance. Here, we compare patterns of genetic diversity and subdivision for six nuclear protein-coding gene regions to those for mtDNA in a common Caribbean coral reef sponge, Callyspongia vaginalis, along the Florida reef tract. We also evaluated a suite of summary statistics to determine which are effective metrics for comparing empirical and simulated data when testing drivers of mito-nuclear discordance in a statistical framework. While earlier work revealed three divergent and geographically subdivided mtDNACOI haplotypes separated by 2.4% sequence divergence, nuclear alleles were admixed with respect to mitochondrial clade and geography. Bayesian analysis showed that substitution rates for the nuclear loci were up to 7 times faster than for mitochondrial COI. Coalescent simulations and neutrality tests suggested that mito-nuclear discordance in C. vaginalis is not the result of ILS in the nucDNA or selection on the mtDNA but is more likely caused by changes in population size. Sperm-mediated gene flow may also influence patterns of population subdivision in the nucDNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.12584 | DOI Listing |
Mol Ecol
January 2025
CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
R Soc Open Sci
December 2024
Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy.
J Evol Biol
December 2024
Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Canary Islands, Spain.
Mitochondrial paraphyly between arthropod species is not uncommon, and has been speculated to largely be the result of incomplete lineage sorting (ILS) of ancestral variation within the common ancestor of both species, with hybridisation playing only a minor role. However, in the absence of comparable nuclear genetic data, the relative roles of ILS and hybridisation in explaining mitochondrial DNA (mtDNA) paraphyly remain unclear. Hybridisation itself is a multifaceted gateway to paraphyly, which may lead to paraphyly across both the nuclear and mitochondrial genomes, or paraphyly that is largely restricted to the mitochondrial genome.
View Article and Find Full Text PDFSyst Biol
June 2024
Institut des Sciences de l'Evolution de Montpellier (ISEM), Univ. Montpellier, CNRS, IRD, Montpellier, France.
The nine-banded armadillo (Dasypus novemcinctus) is the most widespread xenarthran species across the Americas. Recent studies have suggested it is composed of four morphologically and genetically distinct lineages of uncertain taxonomic status. To address this issue, we used a museomic approach to sequence 80 complete mitogenomes and capture 997 nuclear loci for 71 Dasypus individuals sampled across the entire distribution.
View Article and Find Full Text PDFMol Phylogenet Evol
September 2024
Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China. Electronic address:
The subgenus Aeschyntelus includes six species that show variations in body color and shape, thus making it difficult to identify them based on morphological identification alone. To date, no genetic study has evaluated species within this genus. Herein, we collected 171 individuals from 90 localities of Rhopalus and employed an integrative taxonomic approach that incorporated morphological data, mitochondrial genomic data (COI, whole mitochondrial data) and nuclear genomic data (18S + 28S rRNAs, nuclear genome-wide SNPs) to delineate species boundaries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!