To impart a desired optical property to metal nanoparticles (NPs) suitable for surface-enhanced Raman scattering (SERS) applications, it is crucial to assemble them in two or three dimensions in addition to controlling their size and shape. Herein, we report a new strategy for the synthesis and direct assembly of Ag NPs on silica nanospheres (AgNPs-SiNS) in the presence of poly(ethylene glycol) (PEG) derivatives such as PEG-OH, bis(amino)-PEGs (DA-PEGs), and O,O'-bis(2-aminopropyl)PEG (DAP-PEG). They exhibited different effects on the formation of Ag NPs with variable sizes (10-40 nm) and density on the silica surface. As the molecular weight (MW) of DA-PEGs increased, the number of Ag NPs on the silica surface increased. In addition, DAP-PEG (MW of 2000), which has a 2-aminopropyl moiety at both ends, promoted the most effective formation and assembly of uniform-sized Ag NPs on a silica surface, as compared to the other PEG derivatives with the same molecular weight. Finally, we demonstrated that AgNPs-SiNS bearing 4-fluorobenzenethiol on its surface induced the strong SERS signal at the single-particle level, indicating that each hybrid particle has internal hot spots. This shows the potential of AgNPs-SiNS for SERS-based sensitive detection of target molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am404435d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!