L-edge near-edge X-ray fine structure spectroscopy (NEXAFS) has become a powerful tool to study the electronic structure and dynamics of metallo-organic and biological compounds in solution. Here, we present a series of density functional theory calculations of Fe L-edge NEXAFS for spin crossover (SCO) complexes within the time-dependent framework. Several key factors that control the L-edge excitations have been carefully examined using an Fe(II) polypyridyl complex [Fe(tren(py)3)](2+) (where tren(py)3 = tris(2-pyridylmethyliminoethyl)amine) as a model system. It is found that the electronic spectra of the low-spin (LS, singlet), intermediate-spin (IS, triplet), and high-spin (HS, quintet) states have distinct profiles. The relative energy positions, but not the spectral profiles, of different spin states are sensitive to the choice of the functionals. The inclusion of the vibronic coupling leads to almost no visible change in the resulting NEXAFS spectra because it is governed only by low-frequency modes of less than 500 cm(-1). With the help of the molecular dynamics sampling in acetonitrile at 300 K, our calculations reveal that the thermal motion can lead to a noticeable broadening of the spectra. The main peak position is strongly associated with the length of the Fe-N bond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp408776p | DOI Listing |
Acc Chem Res
February 2024
Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France.
ConspectusThe harvesting and conversion of solar energy have become a burning issue for our modern societies seeking to move away from the exploitation of fossil fuels. In this context, dye-sensitized solar cells (DSSCs) have proven to be trustworthy alternatives to silicon-based cells with advantages in terms of transparency and efficiency under low illumination conditions. These devices are highly dependent on the ability of the sensitizer that they contain to collect sunlight and transfer an electron to a semiconductor after excitation.
View Article and Find Full Text PDFCommun Chem
January 2023
Wigner Research Centre for Physics, P.O. Box 49, H-1525, Budapest, Hungary.
It has long been known that irradiation with visible light converts Fe(II) polypyridines from their low-spin (singlet) to high-spin (quintet) state, yet mechanistic interpretation of the photorelaxation remains controversial. Herein, we simulate the full singlet-triplet-quintet dynamics of the [Fe(terpy)] (terpy = 2,2':6',2"-terpyridine) complex in full dimension, in order to clarify the complex photodynamics. Importantly, we report a branching mechanism involving two sequential processes: a dominant MLCT→MC(T)→MC(T)→MC, and a minor MLCT→MC(T)→MC component.
View Article and Find Full Text PDFJ Am Chem Soc
July 2022
Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States.
A study of a series of six-coordinate Co(III) complexes has been carried out to quantify spectroscopic parameters for a range of ligands that are commonly employed to realize strong charge-transfer absorptions in low-spin, d systems. Identification of any three ligand-field transitions allows for the determination of the splitting parameter (10 Dq) as well as the Racah and parameters for a given compound. The data revealed a relatively small spread in the magnitude of 10 Dq, ranging from ca.
View Article and Find Full Text PDFFaraday Discuss
September 2022
Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA.
The question of whether one can use information from quantum coherence as a means of identifying vibrational degrees of freedom that are active along an excited-state reaction coordinate is discussed. Specifically, we are exploring the notion of whether quantum oscillations observed in single-wavelength kinetics data exhibiting coherence dephasing times that are intermediate between that expected for either pure electronic or pure vibrational dephasing are vibronic in nature and therefore may be coupled to electronic state-to-state evolution. In the case of a previously published Fe(II) polypyridyl complex, coherences observed subsequent to A → MLCT excitation were linked to large-amplitude motion of a portion of the ligand framework; dephasing times on the order of 200-300 fs suggested that these degrees of freedom could be associated with ultrafast (∼100 fs) conversion from the initially formed MLCT excited state to lower-energy, metal-centered ligand-field excited state(s) of the compound.
View Article and Find Full Text PDFJ Am Chem Soc
June 2021
Department of Chemistry, Michigan State University 578 South Shaw Lane, East Lansing, Michigan 48824, United States.
The development of chromophores based on earth-abundant transition metals whose photophysical properties are dominated by their charge-transfer excited states has inspired considerable research over the past decade. One challenge associated with this effort is satisfying the dual requirements of a strong ligand field and chemical tunability of the compound's absorptive cross-section. Herein we explore one possible approach using a heteroleptic compositional motif that combines both of these attributes into a single compound.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!