Quantifying non-methane hydrocarbons (NMHC) from animal feeding operations (AFOs) is challenging due to the broad spectrum of compounds and the polar nature of the most abundant compounds. The purpose of this study was to determine the performance of commercial NMHC analyzers for measuring volatile organic compounds (VOCs) commonly emitted from AFOs. Three different NMHC analyzers were tested for response to laboratory generated VOCs, and two were tested in the field at a commercial poultry facility. The NMHC analyzers tested included gas chromatography/flame ionization detector (GC/FID), photoacoustic infrared (PA-IR) and photoionization detector (PID). The GC/FID NHHC analyzer was linear in response to nonpolar compounds, but detector response to polar oxygenated compounds were lower than expected due to poor peak shape on the column. The PA-IR NMHC instrument responded well to the calibration standard (propane), methanol, and acetone, but it performed poorly with larger alcohols and ketones and acetonitrile. The PA-IR response varied between compounds in similar compound classes. The PID responded poorly to many of the most abundant VOCs at AFOs, and it underreported alcohols by > 70%. In the field monitoring study, total NMHC concentrations were calculated from sum total of VOC determined using EPA Methods TO-15 and TO-17 with GC-MS compared to results from NMHC analyzers. NMHC GC/FID values were greater than the values calculated from the individual compound measurements. This indicated the presence of small hydrocarbons not measured with TO-15 or TO-17 such as propane. The PA-IR response was variable, but it was always lower than the GC/FID response. Results suggest that improved approaches are needed to accurately determine the VOC profile and NMHC emission rates from AFOs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10962247.2013.804464 | DOI Listing |
Environ Sci Pollut Res Int
June 2017
EMMA Laboratory, Center for Analysis and Research, Faculty of Science, University Saint-Joseph, Beirut, Lebanon.
Health risks posed by ambient air pollutants to the urban Lebanese population have not been well characterized. The aim of this study is to assess cancer risk and mortality burden of non-methane hydrocarbons (NMHCs) and particulates (PM) based on two field-sampling campaigns conducted during summer and winter seasons in Beirut. Seventy NMHCs were analyzed by TD-GC-FID.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
October 2013
U.S. Department of Agriculture, Agricultural Research Service, National Laboratory for Agriculture and the Environment, Ames, Iowa 50011, USA.
Quantifying non-methane hydrocarbons (NMHC) from animal feeding operations (AFOs) is challenging due to the broad spectrum of compounds and the polar nature of the most abundant compounds. The purpose of this study was to determine the performance of commercial NMHC analyzers for measuring volatile organic compounds (VOCs) commonly emitted from AFOs. Three different NMHC analyzers were tested for response to laboratory generated VOCs, and two were tested in the field at a commercial poultry facility.
View Article and Find Full Text PDFEnviron Monit Assess
January 2008
Escuela Técnica Superior de Ingeniería, UPV-EHU, Alameda de Urquijo s/n, 48013 Bilbao, Spain.
We present a very complete database of individual non-methane hydrocarbon (NMHC) measurements with high temporal resolution (hourly) in a rural background atmosphere. We show their use to characterize the biogenic NMHC as well as to identify the transport and impact of anthropogenic NMHC on rural areas. In January 2003 an automatic GC-FID analyzer of volatile organic compounds between 2 and 10 carbon atoms (C2-C10 VOCs) was placed in the centre of the Valderejo Natural Park in northern Iberia (42.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
October 2006
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA.
Comprehensive field studies were initiated in 2002 to measure emissions of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), methane (CH4), nonmethane hydrocarbons (NMHC), particulate matter <10 microm in diameter, and total suspended particulate from swine and poultry production buildings in the United States. This paper focuses on the quasicontinuous gas concentration measurement at multiple locations among paired barns in seven states. Documented principles, used in air pollution monitoring at industrial sources, were applied in developing quality assurance (QA) project plans for these studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!