Bonding effectiveness to different chemically pre-treated dental zirconia.

Clin Oral Investig

KU Leuven BIOMAT, Department of Oral Health Sciences, KU Leuven (University of Leuven) & Dentistry, University Hospitals Leuven, Kapucijnenvoer 7, Blok a Bus 7001, 3000, Leuven, Belgium.

Published: September 2014

Objective: The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia.

Methods: Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed.

Results: Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability.

Conclusion: Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia.

Clinical Relevance: As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-013-1152-7DOI Listing

Publication Analysis

Top Keywords

ceramic primer
20
ivoclar vivadent
16
clearfil ceramic
16
primer kuraray
16
kuraray noritake
16
noritake monobond
12
monobond ivoclar
12
cojet espe
8
pre-treated zirconia
8
scotchbond universal
8

Similar Publications

The Impact of an MDP-Containing Primer on the Properties of Zinc Oxide Networks Infiltrated with BisGMA-TEGDMA and UDMA-TEGDMA Polymers.

Materials (Basel)

December 2024

Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Arnold-Heller-Straße 16, 24105 Kiel, Germany.

This study was conducted to evaluate the material properties of polymer-infiltrated zinc oxide networks (PICN) and the effect of using a phosphate monomer-containing primer applied before polymer infiltration. A total of 148 ZnO-network (zinc oxide) specimens were produced: = 74 were treated with a primer before polymer infiltration and light curing, while the remaining specimens were untreated. Each group was divided into two subgroups ( = 37) based on the infiltrating polymer: UDMA (aliphatic urethane-dimethacrylates)-TEGDMA (triethylene glycol-dimethacrylate) or BisGMA (bisphenol A-glycidyl-methacrylate)-TEGDMA.

View Article and Find Full Text PDF

Fracture Resistance of Chairside CAD/CAM Lithium Disilicate Partial and Full Coverage Crowns and Veneers for Maxillary Canines.

Oper Dent

January 2025

Nathaniel C Lawson, DDS, PhD, director of Master of Science in Dental Biomaterials program and associate professor, Department of Clinical and Community Sciences, University of Alabama at Birmingham School of Dentistry, Birmingham, AL, USA.

Objective: This study aimed to assess the fracture resistance of chairside computer assisted design and computer assisted manufacturing (CAD-CAM) lithium disilicate partial and full-coverage crowns and veneers for maxillary canines.

Methods And Materials: Forty-eight restorations for maxillary right canines (12 per group) were designed as follows: (1) partial crown with finish line in the upper middle third; (2) partial crown with finish line in the lower middle third; (3) traditional labial veneer; and (4) traditional full-coverage crown. Restorations were fabricated out of lithium disilicate (Amber Mill, Hassbio) using a chairside CAD-CAM system (Cerec Dentsply Sirona).

View Article and Find Full Text PDF

Shear bond strength and ARI scores of metal brackets to glazed glass ceramics and zirconia: an in vitro study investigating surface treatment protocols.

BMC Oral Health

December 2024

Faculty of Dentistry, Innovative Dental Materials and Interfaces Research Unit (URB2i), UR 4462, Paris Cité University, 1 rue Maurice Arnoux, Montrouge, 92120, France.

Objective: To evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) scores of metal brackets to glazed lithium disilicate reinforced glass-ceramics and zirconia according to various surface treatment protocols.

Methods: A total of 240 lithium disilicate ceramic (LD) and 240 zirconia (Zr) blocks were randomly divided according to sandblasting, hydrofluoric acid (HF) etching, universal primer use, and the adhesive system applied. A maxillary canine metal bracket was bonded to each sample with resin cement (Transbond XT, TXT).

View Article and Find Full Text PDF

The aim of this study is to assess the presence of MDP at various stages of the bonding procedure, enhance the adhesive and mechanical behavior of cemented zirconia ceramics. Fifty ceramic slices (15 × 15 × 2 mm) and 48 discs (Ø= 10 mm, 1 mm thickness) were prepared, sintered, air-abraded with aluminum oxide, and allocated considering: 1) microshear bond strength (µSBS) between ceramic slices and luting agent cylinders (height= 1 mm, Ø= 1.2 mm); 2) fatigue behavior, ceramic discs paired and bonded onto fiber-epoxy resin discs (Ø= 10 mm, 2.

View Article and Find Full Text PDF
Article Synopsis
  • The study compared airborne-particle abrasion to hydrofluoric acid etching as a method for preparing silicate ceramic restorations for adhesive bonding.
  • The research involved various substrates (feldspar, lithium silicate, and zirconia) undergoing different abrasion conditions, and evaluated surface characteristics and tensile bond strength after treatment.
  • Results indicated that airborne-particle abrasion, particularly using 50 µm particles at 0.1 MPa, effectively enhances bond strength and surface roughness, suggesting it as a viable alternative to traditional etching methods for ceramics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!