Bovine colostrum is the first milk secreted by cows after parturition and has high levels of protein, immunoglobulins, and various growth factors. We determined the effects of 8 weeks of bovine colostrum supplementation versus whey protein during resistance training in older adults. Males (N = 15, 59.1 ± 5.4 y) and females (N = 25, 59.0 ± 6.7 y) randomly received (double-blind) 60 g/d of colostrum or whey protein complex (containing 38 g protein) while participating in a resistance training program (12 exercises, 3 sets of 8-12 reps, 3 days/ week). Strength (bench press and leg press 1-RM), body composition (by dual energy x-ray absorptiometry), muscle thickness of the biceps and quadriceps (by ultrasound), cognitive function (by questionnaire), plasma insulin-like growth factor-1 (IGF-1) and C-reactive protein (CRP, as a marker of inflammation), and urinary N-telopeptides (Ntx, a marker of bone resorption) were determined before and after the intervention. Participants on colostrum increased leg press strength (24 ± 29 kg; p < .01) to a greater extent than participants on whey protein (8 ± 16 kg) and had a greater reduction in Ntx compared with participants on whey protein (-15 ± 40% vs. 10 ± 42%; p < .05). Bench press strength, muscle thickness, lean tissue mass, bone mineral content, and cognitive scores increased over time (p < .05) with no difference between groups. There were no changes in IGF-1 or CRP. Colostrum supplementation during resistance training was beneficial for increasing leg press strength and reducing bone resorption in older adults. Both colostrum and whey protein groups improved upper body strength, muscle thickness, lean tissue mass, and cognitive function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/ijsnem.2013-0182 | DOI Listing |
Food Sci Biotechnol
January 2025
QU Health, College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
In recent years, there has been a growing interest in developing a distinguished alternative to human consumption of animal-based proteins. The application of lentil proteins in the food industry is typically limited due to their poor solubility and digestibility. An innovative method of balancing lentil-whey protein (LP-WP) complexes with higher-quality protein properties was established to address this issue, which coupled a pH-shifting approach with fermentation treatment.
View Article and Find Full Text PDFFood Chem X
January 2025
Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA.
The glycomes of bovine whey, egg white, pea, and soy protein isolates are described here. -glycans from four protein isolates were analyzed by HILIC high performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (HILIC-FLD-QTOF-MS/MS). In total, 33 glycans from bovine whey and egg white and 10 -glycans from soy and pea glycoproteins were identified.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States.
Protein-polysaccharide complex carrier can solve the problem of insufficient stability of Monascus pigments (MPs), a kind of natural pigments, against heat and light. It also has the function to stabilize Pickering emulsion (PE) that can be used as fat replacer in meat products. In this study, heat denatured whey protein (HWP) and pectin modified by octenyl succinic anhydride (OSA-pectin) were prepared into complex by adding Ca loaded with MPs.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Faculty of Food Technology, University of Agriculture, Balicka St. 122, PL-30-149 Cracow, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Cracow, Poland. Electronic address:
Effect of different evening primrose oil content (1-20 %) on the rheological, mechanical, textural and microstructure of furcellaran/whey protein isolate emulsion gels were investigated at neutral, unmodified pH environment. The results indicate that, irrespective of the concentration, the oil acted as an inactive filler and was not chemically bound in the polymer network but only physically immobilized in it. The increasing oil amount in the material from 1 to 20 % resulted in a percentage decrease in hardness (52 %), gumminess (71 %) and stress relaxation ratio (17 %) which means that presence of the hydrophobic components weakens the structure of the material, but all samples exhibit elastic behaviour.
View Article and Find Full Text PDFFood Funct
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!