syn- and enantioselective Henry reactions of aliphatic aldehydes and application to the synthesis of safingol.

Chemistry

Department of Chemistry and State Key Laboratory of Physical Chemistry for Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (P. R. China), Fax: (+86) 592-2185192.

Published: December 2013

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201303650DOI Listing

Publication Analysis

Top Keywords

syn- enantioselective
4
enantioselective henry
4
henry reactions
4
reactions aliphatic
4
aliphatic aldehydes
4
aldehydes application
4
application synthesis
4
synthesis safingol
4
syn-
1
henry
1

Similar Publications

Herein, we present an economical method for highly enantioselective and diastereoselective Cu-BINAP-catalysed reductive coupling of alkoxyallenes with a range of electronically and structurally diverse ketones to afford 1,2-,-diols, using PMHS as the hydride source. This reductive coupling has also been efficiently employed in the enantioselective desymmetrization of prochiral cyclic ketones harboring quaternary centres, in high yields with exclusive diastereoselectivity. Density Functional Theory (DFT) calculations are used to elucidate that the reaction is facilitated by a kinetically favourable "open" -enolate copper-alkoxyallene conformer, occurring at a lower Gibbs free energy barrier (by 3.

View Article and Find Full Text PDF

In this study, a series of chiral amido-oxazoline ligands was synthesized with a primary focus on immobilizing the most effective ligands on MCM-41 mesoporous material. Following several attempts, the -nitro group of the chiral amido-oxazoline ligands was successfully reduced to amino group, enabling their immobilization on MCM-41. The resulting chiral heterogeneous amido-oxazoline ligands were characterized using various techniques, including FT-IR, XRD, TGA, SEM, TEM, EDX, and BET-BJH, confirming the successful immobilization of the amido-oxazoline ligands.

View Article and Find Full Text PDF

Efforts toward the Total Synthesis of Thuggacin A.

Org Lett

November 2024

State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Thuggacin A () is a 17-membered-ring-polyketide antibiotic compound with excellent antituberculosis activity. The total synthesis of thuggacin A has not yet been reported so far. Herein, we disclose our efforts toward the convergent total synthesis of thuggacin A.

View Article and Find Full Text PDF

Both enantiomers of functionalized Hajos-Parrish ketone (HPK) analogs were prepared with excellent diastereoselectivities and enantioselectivities using the same chiral catalyst under two slightly different conditions. In condition A, dioxane was used as the solvent with 3 equivalents of water. In condition B, acetonitrile was used as the solvent with 30 equivalents of water, followed by epimerization with a base in a one-pot.

View Article and Find Full Text PDF

Access to Alkenyl Cyclobutanols by Ni-Catalyzed Regio- and Enantio-Selective syn-Hydrometalative 4-exo-trig Cyclization of Alkynones.

Angew Chem Int Ed Engl

January 2025

Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Rd, Wuhan, 430072, China.

Enantioselective synthesis of (spiro)cyclobutane derivatives poses significant challenges yet holds promising applications for both synthetic and medicinal chemistry. We report here a nickel-catalyzed asymmetric syn-hydrometalative 4-exo-trig cyclization of 1,4-alkynones to synthesize alkenyl cyclobutanols with a tetrasubstituted stereocenter. This strategy features a broad substrate scope, delivering a variety of trifluoromethyl-containing rigid (spiro)carbocycle skeletons in good yields with high enantioselectivities (up to 84 % yield and 98.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!