An ultrathin amorphous silicon solar cell with conformal zig-zag nanoconfiguration is studied from both light-trapping and light-conversion perspectives. The design improves the front antireflection property, optimizes the rear metallic reflector, and elongates the optical path inside the photoactive layer. Compared to conventional nanoconfigurations, this system shows significant absorption enhancement in the whole amorphous silicon band and exhibits extremely low sensitivity to light polarization. The nano-optimization indicates that the short-circuit current density (light-conversion efficiency) of the 200-nm-thick solar cell can be 16.88 mA/cm² (13.38%), showing an enhancement factor of 32.90% (33.53%) from the planar system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.38.005071 | DOI Listing |
J Funct Biomater
December 2024
Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland.
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan.
To tackle disorder in crystals and short- and intermediate-range order in amorphous materials, such as glass, we developed a carry-in diffractometer to utilise X-ray fluorescence holography (XFH) and anomalous X-ray scattering (AXS), facilitating element-specific analyses with atomic resolution using the wavelength tunability of a synchrotron X-ray source. Our diffractometer unifies XFH and AXS configurations to determine the crystal orientation via diffractometry. In particular, XFH was realised even for a crystal with blurred emission lines by a standing wave in a hologram, and high-throughput AXS with sufficient count statistics and energy resolution was achieved using three multi-array detectors with crystal analysers.
View Article and Find Full Text PDFNanotechnology
December 2024
Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, Virginia, 23284-2512, UNITED STATES.
Nature
December 2024
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
The demand for the three-dimensional (3D) integration of electronic components is steadily increasing. Despite substantial processing challenges, the through-silicon-via (TSV) technique emerges as the only viable method for integrating single-crystalline device components in a 3D format. Although monolithic 3D (M3D) integration schemes show promise, the seamless connection of single-crystalline semiconductors without intervening wafers has yet to be demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!