We describe temporal compression of ultrabroadband, few microjoule mid-infrared (mid-IR) pulses from a noncollinear optical parametric amplifier (NOPA) employed in a sum-frequency generation (SFG) vibrational spectroscopic system, operating in total-internal-reflection geometry. The propagation of the mid-IR beam through optical materials results in a significant temporal chirp at the probed interface, which is analyzed and corrected by properly managing the total dispersion of materials introduced into the mid-IR beam path. By employing the simultaneous spatial and temporal focusing of the broadband infrared pulses at the probed interface, we achieve a sub-50-fs full width at half-maximum (FWHM) for the instrument response function, measured via SFG cross correlation of the ultrashort mid-IR pulses with an ultrashort (~30 fs) near-IR pulse from a synchronized, independently tunable NOPA. From the SFG cross-correlation FWHM, we extract a sub-30-fs mid-IR pulse duration, making it a suitable SFG spectroscopic system to investigate vibrational dynamics in hydrogen-bonded systems at interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.38.005008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!