Background: Supplemental oxygen is necessary in the respiratory support of very preterm infants, but it may contribute to bronchopulmonary dysplasia and an increased risk of poor lung function in later life. It is well established that hyperoxia can inhibit alveolarization, but effects on the developing conducting airways, which are important determinants of lung function, are poorly understood. It is possible that prolonged exposure of the immature lung to hyperoxic gas alters the development of small conducting airways (bronchioles), and that these effects may persist throughout life.
Objectives: To examine the effects of neonatal inhalation of hyperoxic gas on the bronchiolar walls in adulthood.
Methods: Neonatal mice (C57BL/6J) born at term inhaled 65% O2 from birth until postnatal day 7; thereafter, they were raised in room air until 10 months postnatal age (P10mo), which is advanced adulthood. Age-matched controls inhaled room air from birth. We investigated small conducting airways with a diameter between 105-310 µm.
Results: At P10mo, bronchiolar walls of hyperoxia-exposed mice contained ∼18% more smooth muscle than controls (p < 0.05), although there was no effect on bronchiolar epithelium or collagen. Neonatal hyperoxia resulted in significantly fewer bronchiolar-alveolar attachments at P10mo (p < 0.05); this was accompanied by persistent simplification of the lung parenchyma, as indicated by greater mean linear intercept and less parenchymal tissue (p < 0.05).
Conclusions: Neonatal exposure to hyperoxia induces remodeling of the bronchiolar walls and loss of bronchiolar-alveolar attachments in adulthood, both of which could contribute to impaired lung function and airway hyper-reactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000355641 | DOI Listing |
J Appl Physiol (1985)
December 2024
Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.
Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO) for 4-h on three consecutive days or remained in room air.
View Article and Find Full Text PDFExp Physiol
December 2024
Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK.
Postural fluid shifts may directly affect respiratory control via a complex interaction of baro- and chemo-reflexes, and cerebral blood flow. Few data exist concerning the steady state ventilatory responses during head-down tilt. We examined the cardiorespiratory responses during acute 50° head-down tilt (HDT) in 18 healthy subjects (mean [SD] age 27 [10] years).
View Article and Find Full Text PDFMed Gas Res
March 2025
Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China.
Adv Exp Med Biol
October 2024
Kindai University Faculty of Medicine, Osaka, Japan.
Metabolites
May 2024
Department of Pulmonology, Amsterdam UMC, Location AMC, 1100 DD Amsterdam, The Netherlands.
Volatile organic compounds (VOCs) might be associated with pulmonary oxygen toxicity (POT). This pilot study aims to identify VOCs linked to oxidative stress employing an in vitro model of alveolar basal epithelial cells exposed to hyperbaric and hyperoxic conditions. In addition, the feasibility of this in vitro model for POT biomarker research was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!