MicroRNAs in Head and Neck Squamous Cell Carcinoma (HNSCC) and Oral Squamous Cell Carcinoma (OSCC).

Cancers (Basel)

Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University/1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.

Published: April 2010

MicroRNAs (miRNAs) are small, noncoding RNAs which regulate cell differentiation, proliferation, development, cell cycle, and apoptosis. Expression profiling of miRNAs has been performed and the data show that some miRNAs are upregulated or downregulated in cancer. Several studies suggest that the expression profiles of miRNAs are associated with clinical outcomes. However, the set of miRNAs with altered expressing differs depending on the type of cancer, suggesting that it is important to understand which miRNAs are related to which cancers. Therefore, this review aimed to discuss potentially crucial miRNAs in head and neck squamous cell carcinoma (HNSCC) and oral squamous cell carcinoma (OSCC).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835097PMC
http://dx.doi.org/10.3390/cancers2020653DOI Listing

Publication Analysis

Top Keywords

squamous cell
16
cell carcinoma
16
head neck
8
neck squamous
8
carcinoma hnscc
8
hnscc oral
8
oral squamous
8
carcinoma oscc
8
mirnas
7
cell
6

Similar Publications

Background: The detection rate of oncogenic human papillomaviruses (HPVs) in sinonasal squamous cell carcinomas (SNSCCs) varies among studies. The mutational landscape of SNSCCs remains poorly investigated.

Methods: We investigated the prevalence and prognostic significance of HPV infections based on p16 protein expression, HPV-DNA detection, and E6/E7 mRNA expression using immunohistochemistry, polymerase chain reaction, and in situ hybridization, respectively.

View Article and Find Full Text PDF

Surgical Approaches to Pre-Auricular Cutaneous Squamous Cell Carcinomas Extending to the Temporal Bone.

Head Neck

January 2025

Department of Otolaryngology, Head and Neck Surgery, Princess Alexandra Hospital, Queensland Skull Base Unit, Brisbane, Queensland, Australia.

Background: Standardized surgical approaches to advanced pre-auricular cutaneous squamous cell carcinomas (cSCC) are lacking.

Methods: Fifty-four patients who underwent lateral temporal bone resection (LTBR) for pre-auricular cSCC were grouped into "Levels" of increasing disease spread. Surgical approaches to achieve negative-margin resection were designed for each Level and replicated on cadaveric specimens.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Objective: Cystic fibrosis (CF) is a clinical entity defined by aberrant chloride (Cl) ion transport causing downstream effects on mucociliary clearance (MCC) in sinonasal epithelia. Inducible deficiencies in transepithelial Cl transport via CF transmembrane conductance regulator (CFTR) has been theorized to be a driving process in recalcitrant chronic rhinosinusitis (CRS) in patients without CF. We have previously identified that brief exposures to bacterial lipopolysaccharide (LPS) in mammalian cells induces an acquired dysfunction of CFTR in vitro and in vivo.

View Article and Find Full Text PDF

Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!