The inflammasomes have an important role in connecting the detection of endogenous and microbial danger signals to caspase-1 activation and induction of protective immune responses. NLRC4 is a cytosolic NOD (nucleotide binding and oligomerization domain)-like receptor (NLR) that can trigger inflammasome formation in response to bacterial flagellin, an immunodominant antigen in the intestine. To characterize the role of NLRC4 in bacterially triggered intestinal inflammation, we used the murine pathogen Citrobacter rodentium, an extracellular, attaching/effacing bacterium similar to enterohemorrhagic Escherichia coli and enteropathogenic E. coli. Following infection with C. rodentium, we found that Nlrc4(-/-) mice developed more severe weight loss, increased bacterial colonization levels, and exacerbated intestinal inflammation compared with wild-type counterparts. Nlrc4(-/-) mice mounted robust adaptive immune responses but were unable to control early colonization by C. rodentium, suggesting that a defect in innate immunity was responsible. Experiments using bone marrow (BM) chimeras revealed that the protective effects of NLRC4 were dependent on its expression in non-hematopoietic cells, and quantitative PCR (Q-PCR) analyses revealed that NLRC4 was highly expressed in epithelial crypts but not in intestinal stroma. Thus, early NLRC4 sensing in intestinal epithelial cells regulates colonization by an extracellular bacterial pathogen and limits subsequent intestinal damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020766 | PMC |
http://dx.doi.org/10.1038/mi.2013.95 | DOI Listing |
Arab J Gastroenterol
January 2025
Department of Neonatology, Children's Hospital of Soochow University, Suzhou, PR China. Electronic address:
Background And Study Aims: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates. In vitro model is an indispensable tool to study the pathogenesis of NEC. This study explored the effects of different stress factors on intestinal injury in vitro.
View Article and Find Full Text PDFGut Microbes
December 2025
Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
Irritable bowel syndrome (IBS) is a multifactorial condition with heterogeneous pathophysiology, including intestinal permeability alterations. The aim of the present study was to assess the ability of a probiotic blend (PB) consisting of two strains (CECT7484 and CECT7485) and one strain of (CECT7483) to recover the permeability increase induced by mediators from IBS mucosal biopsies and to highlight the underlying molecular mechanisms. Twenty-one IBS patients diagnosed according to ROME IV criteria (11 IBS-D and 10 IBS-M) and 7 healthy controls were enrolled.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Laboratory Animal Center, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, P.R. China.
Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.
Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.
ACS Appl Mater Interfaces
January 2025
Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People's Republic of China.
Aim: We sought to investigate the impact of CpG oligodeoxynucleotides (CpG-ODN) administration on the lung and gut microbiota in asthmatic mice, specifically focusing on changes in composition, diversity, and abundance, and to elucidate the microbial mechanisms underlying the therapeutic effects of CpG-ODN and identify potential beneficial bacteria indicative of its efficacy.
Methods: HE staining were used to analyze inflammation in lung, colon and small intestine tissues. High-throughput sequencing technology targeting 16S rRNA was employed to analyze the composition, diversity, and correlation of microbiome in the lung, colon and small intestine of control, model and CpG-ODN administration groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!