Background: The development of resistant cultivars has been the most effective and economical strategy to control bacterial leaf blight (BB) disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Molecular markers have made it possible to identify and pyramid valuable genes of agronomic importance in resistance rice breeding. In this study, three resistance genes (Xa4 + xa5 + Xa21) were transferred from an indica donor (IRBB57), using a marker-assisted backcrossing (MAB) breeding strategy, into a BB-susceptible elite japonica rice cultivar, Mangeumbyeo, which is high yielding with good grain quality.

Results: Our analysis led to the development of three elite advanced backcross breeding lines (ABL) with three resistance genes by foreground and phenotypic selection in a japonica genetic background without linkage drag. The background genome recovery of the ABL expressed more than 92.1% using genome-wide SSR marker analysis. The pathogenicity assays of three resistance-gene-derived ABL were conducted under glasshouse conditions with the 18 isolates of Xoo prevalent in Korea. The ABL exhibited very small lesion lengths, indicating a hypersensitive reaction to all 18 isolates of Xoo, with agronomic and grain quality traits similar to those of the recurrent parent. Pyramiding the resistance genes Xa4, xa5 and Xa21 provided a higher resistance to Xoo than the introduction of the individual resistance genes. Additionally, the combination of two dominant and one recessive BB resistance gene did not express any negative effect on agronomic traits in the ABL.

Conclusions: The strategy of simultaneous foreground and phenotypic selection to introduce multiple R genes is very useful to reduce the cost and the time required for the isolation of desirable recombinants with target resistance genes in rice. The resistance-gene-derived ABL have practical breeding value without a yield penalty by providing broad-spectrum resistance against most of the existing isolates of BB in South Korea and will have a high impact on the yield stability and sustainability of rice productivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883717PMC
http://dx.doi.org/10.1186/1939-8433-6-5DOI Listing

Publication Analysis

Top Keywords

resistance genes
24
resistance
11
breeding lines
8
genes
8
three resistance
8
foreground phenotypic
8
phenotypic selection
8
resistance-gene-derived abl
8
isolates xoo
8
rice
6

Similar Publications

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Epidemiological evidence has shown that the regular ingestion of vegetables and fruits is associated with reduced risk of developing chronic diseases. The introduction of the 3Rs (replacement, reduction, and refinement) principle into animal experiments has led to the use of valid, cost-effective, and efficient alternative and complementary invertebrate animal models which are simpler and lower in the phylogenetic hierarchy. Caenorhabditis elegans (C.

View Article and Find Full Text PDF

Time-series analysis reveals metabolic and transcriptional dynamics during mulberry fruit development and ripening.

Int J Biol Macromol

January 2025

Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China. Electronic address:

Understanding the global transcriptomic and metabolic changes during mulberry growth and development is essential for the enhancing fruit quality and optimizing breeding strategies. By integrating phenotypic, metabolomic, and transcriptomic data across 18 developmental and ripening stages of Da10 mulberry fruit, a global map of gene expression and metabolic changes was generated. Analysis revealed a gradual progression of morphological, metabolic, and transcriptional changes throughout the development and ripening phases.

View Article and Find Full Text PDF

MarR family regulator LcbR2 activates lincomycin biosynthesis in multiple ways.

Int J Biol Macromol

January 2025

Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.

Lincomycin, produced by the actinomycete Streptomyces lincolnensis, is highly effective against Gram-positive bacteria and protozoans, making it widely used in clinical settings. This study identified LcbR2, a MarR family transcriptional regulator, as an activator of lincomycin biosynthesis. Knocking out the lcbR2 gene reduced lincomycin production by 63.

View Article and Find Full Text PDF

Biological studies reveal the role of trpA gene in biofilm formation, motility, hemolysis and virulence in Vibrio anguillarum.

Microb Pathog

January 2025

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

Vibrio anguillarum is a pathogen responsible for vibriosis in aquaculture animals. The formation of bacterial biofilm contributes to infections and increases resistance to antibiotics. Tryptophanase and its substrate tryptophan have been recognized as signal molecules regulating bacterial biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!