AI Article Synopsis

  • The rice transcription factors IDEF1, IDEF2, and OsIRO2 play crucial roles in regulating iron uptake and the production of mugineic acid-family phytosiderophores (MAs).
  • A microarray analysis revealed that over 1000 genes were significantly upregulated in rice roots within 36 hours after iron deficiency treatment, with specific gene patterns for MAs biosynthesis and transport emerging at 24 and 36 hours.
  • The differential expression of genes like OsIDS1 indicated a unique early response to iron deficiency, suggesting various regulatory mechanisms are at play during the initial stages of iron scarcity in rice.

Article Abstract

Background: The rice transcription factors IDEF1, IDEF2, and OsIRO2 have been identified as key regulators of the genes that control iron (Fe) uptake, including the biosynthesis of mugineic acid-family phytosiderophores (MAs). To clarify the onset of Fe deficiency, changes in gene expression were examined by microarray analysis using rice roots at 3, 6, 9, 12, 24, and 36 h after the onset of Fe-deficiency treatment.

Results: More than 1000 genes were found to be upregulated over a time course of 36 h. Expression of MAs-biosynthetic genes, OsIRO2, and the Fe3+-MAs complex transporter OsYSL15 was upregulated at the 24 h and 36 h time points. Moreover, these genes showed very similar patterns of expression changes, but their expression patterns were completely different from those of a metallothionein gene (OsIDS1) and the Fe2+-transporter genes OsIRT1 and OsIRT2. OsIDS1 expression was upregulated by the 6 h time point. The early induction of OsIDS1 expression was distinct from the other Fe-deficiency-inducible genes investigated and suggested a functional relationship with heavy-metal homeostasis during the early stages of Fe deficiency.

Conclusions: We showed that many genes related to MAs biosynthesis and transports were regulated by a distinct mechanism in roots. Furthermore, differences in expression changes and timing in response to Fe deficiency implied that different combinations of gene regulation mechanisms control the initial responses to Fe deficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883707PMC
http://dx.doi.org/10.1186/1939-8433-6-16DOI Listing

Publication Analysis

Top Keywords

early stages
8
expression changes
8
osids1 expression
8
genes
7
expression
7
rice genes
4
genes involved
4
involved phytosiderophore
4
phytosiderophore biosynthesis
4
biosynthesis synchronously
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!