Background: Rice research has been enabled by access to the high quality reference genome sequence generated in 2005 by the International Rice Genome Sequencing Project (IRGSP). To further facilitate genomic-enabled research, we have updated and validated the genome assembly and sequence for the Nipponbare cultivar of Oryza sativa (japonica group).
Results: The Nipponbare genome assembly was updated by revising and validating the minimal tiling path of clones with the optical map for rice. Sequencing errors in the revised genome assembly were identified by re-sequencing the genome of two different Nipponbare individuals using the Illumina Genome Analyzer II/IIx platform. A total of 4,886 sequencing errors were identified in 321 Mb of the assembled genome indicating an error rate in the original IRGSP assembly of only 0.15 per 10,000 nucleotides. A small number (five) of insertions/deletions were identified using longer reads generated using the Roche 454 pyrosequencing platform. As the re-sequencing data were generated from two different individuals, we were able to identify a number of allelic differences between the original individual used in the IRGSP effort and the two individuals used in the re-sequencing effort. The revised assembly, termed Os-Nipponbare-Reference-IRGSP-1.0, is now being used in updated releases of the Rice Annotation Project and the Michigan State University Rice Genome Annotation Project, thereby providing a unified set of pseudomolecules for the rice community.
Conclusions: A revised, error-corrected, and validated assembly of the Nipponbare cultivar of rice was generated using optical map data, re-sequencing data, and manual curation that will facilitate on-going and future research in rice. Detection of polymorphisms between three different Nipponbare individuals highlights that allelic differences between individuals should be considered in diversity studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395016 | PMC |
http://dx.doi.org/10.1186/1939-8433-6-4 | DOI Listing |
Photodiagnosis Photodyn Ther
January 2025
Department of Ophthalmology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Turkey.
Purpose: In this study, it was planned to compare the macular ganglion cell analysis (GCA) and peripapillary retinal nerve fiber layer (pRNFL) of the patients with preperimetric glaucoma (PPG), early stage glaucoma (EG) and the control group.
Methods: This retrospective study included a total of 103 eyes: 38 from EG patients, 30 from PPG patients, and 35 from healthy individuals at Ankara Bilkent City Hospital Glaucoma Unit between January 2018 and September 2021. Eyes were categorized into control, PPG, and EG groups based on visual field (VF) classification.
Sensors (Basel)
January 2025
Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
The design of optical sensors aims at providing, among other things, the highest precision in the determination of the target measurand. Many sensor systems rely on a spectral transducer to map changes in the measurand into spectral shifts of a resonance peak in the reflection or transmission spectrum, which is measured by a readout device (e.g.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
Recent progress in superconductor-insulator transition has shed light on the intermediate metallic state with unique electronic inhomogeneity. The microscopic model, suggesting that carrier spatial distribution plays a decisive role in the intermediate state, has been instrumental in understanding the quantum transition. However, the narrow carrier density window in which the intermediate state exists necessitates precise control of the gate dielectric layer, presenting a challenge to in situ map the carrier spatial distribution.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Radiation Oncology, Duke University, North Carolina, USA.
Background: The electronic compensation (ECOMP) technique for breast radiation therapy provides excellent dose conformity and homogeneity. However, the manual fluence painting process presents a challenge for efficient clinical operation.
Purpose: To facilitate the clinical treatment planning automation of breast radiation therapy, we utilized reinforcement learning (RL) to develop an auto-planning tool that iteratively edits the fluence maps under the guidance of clinically relevant objectives.
J Imaging
January 2025
Department of Computer Science, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
The safety and efficiency of assembly lines are critical to manufacturing, but human supervisors cannot oversee all activities simultaneously. This study addresses this challenge by performing a comparative study to construct an initial real-time, semi-supervised temporal action recognition setup for monitoring worker actions on assembly lines. Various feature extractors and localization models were benchmarked using a new assembly dataset, with the I3D model achieving an average mAP@IoU=0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!