A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine. | LitMetric

MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine.

Biomaterials

Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, South Korea; Center for Theragnosis, Biomedical Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 6, Seongbuk-gu, Seoul 136-791, South Korea. Electronic address:

Published: February 2014

AI Article Synopsis

  • Mesenchymal stem cells (MSCs) are valued in regenerative medicine because they can act as versatile replacement cells and can be enhanced through gene therapy.
  • The study focuses on a new method using bile acid-modified polyethyleneimine (BA-PEI) to effectively transfer a therapeutic gene (pHI-VEGF) into MSCs, improving traditional transfection techniques.
  • The engineered MSCs showed better survival under low-oxygen conditions and promoted blood vessel formation in heart tissue after myocardial infarction, highlighting the potential for using modified MSCs in treating heart damage.

Article Abstract

Mesenchymal stem cells (MSCs) have attracted much attention in regenerative medicine owing to their apparent usefulness as multi-potent replacement cells. The potential of MSC therapy can be further improved by transforming MSCs with therapeutic genes that maximize the efficacy of gene therapy and their own therapeutic ability. Since most conventional transfection methodologies have shown marginal success in delivering exogenous genes into primary cultured cells, efficient gene transfer into primary MSCs is a prerequisite for the development of MSC-based gene therapy strategies to achieve repair and regeneration of damaged tissues. Herein, facially amphipathic bile acid-modified polyethyleneimine (BA-PEI) conjugates were synthesized and used to transfer hypoxia-inducible vascular endothelial growth factor gene (pHI-VEGF) in MSCs for the treatment of rat myocardial infarction. Under the optimized transfection conditions, the BA-PEI conjugates significantly increased the VEGF protein expression levels in rat MSCs, compared with traditional transfection methods such as Lipofectamineâ„¢ and branched-PEI (25 kDa). Furthermore, the prepared pHI-VEGF-engineered MSCs (VEGF-MSCs) resulted in improved cell viability, particularly during severe hypoxic exposure in vitro. The transplantation of MSCs genetically modified to overexpress VEGF by BA-PEI enhanced the capillary formation in the infarction region and eventually attenuated left ventricular remodeling after myocardial infarction in rats. This study demonstrates the applicability of the BA-PEI conjugates for the efficient transfection of therapeutic genes into MSCs and the feasibility of using the genetically engineered MSCs in regenerative medicine for myocardial infarction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2013.11.019DOI Listing

Publication Analysis

Top Keywords

myocardial infarction
16
gene therapy
12
ba-pei conjugates
12
mscs
9
rat myocardial
8
amphipathic bile
8
regenerative medicine
8
therapeutic genes
8
gene
5
infarction
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: