Africa contains a huge diversity of both cultivated and wild rice species. The region has eight species representing six of the ten known genome types. Genetic resources of these species are conserved in various global germplasm repositories but they remain under collected and hence underrepresented in germplasm collections. Moreover, they are under characterized and therefore grossly underutilized. The lack of in situ conservation programs further exposes them to possible genetic erosion or extinction. In order to obtain maximum benefits from these resources, it is imperative that they are collected, efficiently conserved and optimally utilized. High throughput molecular approaches such as genome sequencing could be employed to more precisely study their genetic diversity and value and thereby enhance their use in rice improvement. Oryza sativa was the first crop plant to have its reference genome sequence released marking a major milestone that opened numerous opportunities for functional characterization of the entire rice genome. Studies have however demonstrated that one reference genome sequence is not enough to fully explore the genetic variation in the Oryza genus, hence the need to have reference sequences for other species in the genus. An overview of the state of conservation and utilization of African Oryza is hereby presented. Progress in the release of reference genome sequences for these species is also highlighted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883696 | PMC |
http://dx.doi.org/10.1186/1939-8433-6-29 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.
Salmonella enterica serovar Typhimurium is a prevalent food-borne pathogen that is usually associated with gastroenteritis infection. S. Typhimurium is also a major cause of bloodstream infections in sub-Saharan Africa, and is responsible for invasive non-typhoidal Salmonella (iNTS) disease.
View Article and Find Full Text PDFPlant Dis
January 2025
INRA Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, CS20032, Villenave d'Ornon , France, 33882 cedex;
Privet leaf blotch-associated virus (PLBaV) is an Idaeovirus discovered by high-throughput sequencing (HTS) in privet (Ligustrum japonicum L) in southern Italy in 2017 (Navarro et al., 2017). In privet, it causes a leaf blotch disease with yellowish or whitish chlorotic blotches or ringspots.
View Article and Find Full Text PDFTransgenic Res
January 2025
Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
To explore the effects of salt-tolerance gene accumulation on salt tolerance in transgenic plant, we used four types of plant expression vector (N27, N28, N29, and N30) carrying mtlD, mtlD + gutD, mtlD + gutD + BADH, mtlD + gutD + BADH + sacB genes respectively, to transform tobacco through Agrobacterium-mediated method. Transgenic lines were identified through polymerase chain reaction (PCR) detection. Transgenic lines and non-transgenic plant (CK) were subjected to 6‰ sodium chloride solution stress; then, fluorescence quantitative PCR (FQ-PCR) and salt tolerance indexes were used to assess characteristics.
View Article and Find Full Text PDFmBio
January 2025
Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
Unlabelled: Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the variable segments of bacterial genomes that can fluctuate significantly in gene content. However, due to the transient and hypervariable nature of many accessory elements, the value of the added resolution in outbreak investigations remains disputed.
View Article and Find Full Text PDFJ Transl Med
January 2025
Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, China.
Objective: This study aims to elucidate the primary signaling communication among papillary craniopharyngioma (PCP) tumor cells.
Methods: Five samples of PCP were utilized for single-cell RNA sequencing. The most relevant ligand and receptor interactions among different cells were calculated using the CellChat package in R software.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!