Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural regulatory T (nT(reg)) cells are important for maintaining tolerance to self- and foreign antigens, and they are thought to develop from thymocytes that receive strong T cell receptor (TCR)-mediated signals in the thymus. TCR engagement leads to the activation of phospholipase C-γ1, which generates the lipid second messenger diacylglycerol (DAG) from phosphatidylinositol 4,5-bisphosphate. We used mice that lack the ζ isoform of DAG kinase (DGKζ), which metabolizes DAG to terminate its signaling, to enhance TCR-mediated signaling and identify critical signaling events in nT(reg) cell development. Loss of DGKζ resulted in increased numbers of thymic CD25(+)Foxp3(-)CD4(+) nT(reg) cell precursors and Foxp3(+)CD4(+) nT(reg) cells in a cell-autonomous manner. DGKζ-deficient T cells exhibited increased nuclear translocation of the nuclear factor κB subunit c-Rel, as well as enhanced extracellular signal-regulated kinase (ERK) phosphorylation in response to TCR stimulation, suggesting that these downstream pathways may contribute to nT(reg) cell development. Indeed, reducing c-Rel abundance or blocking ERK phosphorylation abrogated the increased generation of nTreg cells by DGKζ-deficient thymocytes. The extent of ERK phosphorylation correlated with TCR-mediated acquisition of Foxp3 in immature thymocytes in vitro. Furthermore, the development of nT(reg) cells was augmented in mice in which ERK activation was selectively enhanced in T cells. Together, these data suggest that DGKζ regulates the development of nT(reg) cells by limiting the extent of activation of the ERK and c-Rel signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103616 | PMC |
http://dx.doi.org/10.1126/scisignal.2004411 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!